Copied to
clipboard

G = C24:29D4order 192 = 26·3

1st semidirect product of C24 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24:29D4, C22:2D24, C23.30D12, (C2xC6):5D8, (C2xD24):9C2, C3:4(C8:7D4), C6.17(C2xD8), C12:7D4:2C2, C8:13(C3:D4), (C22xC8):10S3, C24:1C4:14C2, (C2xC8).308D6, C2.D24:3C2, (C2xC4).68D12, C2.17(C2xD24), (C22xC24):10C2, C6.18(C4oD8), C12.413(C2xD4), (C2xC12).356D4, C2.18(C4oD24), C6.71(C4:D4), (C22xC4).447D6, (C22xC6).141D4, C4.112(C4oD12), C12.228(C4oD4), C2.19(C12:7D4), (C2xC24).380C22, (C2xC12).769C23, (C2xD12).19C22, C22.132(C2xD12), C4:Dic3.24C22, (C22xC12).519C22, (C2xC6).159(C2xD4), C4.106(C2xC3:D4), (C2xC4).717(C22xS3), SmallGroup(192,674)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24:29D4
C1C3C6C2xC6C2xC12C2xD12C2xD24 — C24:29D4
C3C6C2xC12 — C24:29D4
C1C22C22xC4C22xC8

Generators and relations for C24:29D4
 G = < a,b,c | a24=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 488 in 134 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, D8, C22xC4, C2xD4, C24, C24, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, D4:C4, C2.D8, C4:D4, C22xC8, C2xD8, D24, C4:Dic3, D6:C4, C2xC24, C2xC24, C2xD12, C2xC3:D4, C22xC12, C8:7D4, C24:1C4, C2.D24, C2xD24, C12:7D4, C22xC24, C24:29D4
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C4oD4, D12, C3:D4, C22xS3, C4:D4, C2xD8, C4oD8, D24, C2xD12, C4oD12, C2xC3:D4, C8:7D4, C2xD24, C4oD24, C12:7D4, C24:29D4

Smallest permutation representation of C24:29D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 67 36 81)(2 66 37 80)(3 65 38 79)(4 64 39 78)(5 63 40 77)(6 62 41 76)(7 61 42 75)(8 60 43 74)(9 59 44 73)(10 58 45 96)(11 57 46 95)(12 56 47 94)(13 55 48 93)(14 54 25 92)(15 53 26 91)(16 52 27 90)(17 51 28 89)(18 50 29 88)(19 49 30 87)(20 72 31 86)(21 71 32 85)(22 70 33 84)(23 69 34 83)(24 68 35 82)
(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(25 47)(26 46)(27 45)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(49 75)(50 74)(51 73)(52 96)(53 95)(54 94)(55 93)(56 92)(57 91)(58 90)(59 89)(60 88)(61 87)(62 86)(63 85)(64 84)(65 83)(66 82)(67 81)(68 80)(69 79)(70 78)(71 77)(72 76)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,67,36,81)(2,66,37,80)(3,65,38,79)(4,64,39,78)(5,63,40,77)(6,62,41,76)(7,61,42,75)(8,60,43,74)(9,59,44,73)(10,58,45,96)(11,57,46,95)(12,56,47,94)(13,55,48,93)(14,54,25,92)(15,53,26,91)(16,52,27,90)(17,51,28,89)(18,50,29,88)(19,49,30,87)(20,72,31,86)(21,71,32,85)(22,70,33,84)(23,69,34,83)(24,68,35,82), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(49,75)(50,74)(51,73)(52,96)(53,95)(54,94)(55,93)(56,92)(57,91)(58,90)(59,89)(60,88)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,67,36,81)(2,66,37,80)(3,65,38,79)(4,64,39,78)(5,63,40,77)(6,62,41,76)(7,61,42,75)(8,60,43,74)(9,59,44,73)(10,58,45,96)(11,57,46,95)(12,56,47,94)(13,55,48,93)(14,54,25,92)(15,53,26,91)(16,52,27,90)(17,51,28,89)(18,50,29,88)(19,49,30,87)(20,72,31,86)(21,71,32,85)(22,70,33,84)(23,69,34,83)(24,68,35,82), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(49,75)(50,74)(51,73)(52,96)(53,95)(54,94)(55,93)(56,92)(57,91)(58,90)(59,89)(60,88)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,67,36,81),(2,66,37,80),(3,65,38,79),(4,64,39,78),(5,63,40,77),(6,62,41,76),(7,61,42,75),(8,60,43,74),(9,59,44,73),(10,58,45,96),(11,57,46,95),(12,56,47,94),(13,55,48,93),(14,54,25,92),(15,53,26,91),(16,52,27,90),(17,51,28,89),(18,50,29,88),(19,49,30,87),(20,72,31,86),(21,71,32,85),(22,70,33,84),(23,69,34,83),(24,68,35,82)], [(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(25,47),(26,46),(27,45),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(49,75),(50,74),(51,73),(52,96),(53,95),(54,94),(55,93),(56,92),(57,91),(58,90),(59,89),(60,88),(61,87),(62,86),(63,85),(64,84),(65,83),(66,82),(67,81),(68,80),(69,79),(70,78),(71,77),(72,76)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A···6G8A···8H12A···12H24A···24P
order1222222234444446···68···812···1224···24
size11112224242222224242···22···22···22···2

54 irreducible representations

dim111111222222222222222
type++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D4D6D6C4oD4D8C3:D4D12D12C4oD8C4oD12D24C4oD24
kernelC24:29D4C24:1C4C2.D24C2xD24C12:7D4C22xC24C22xC8C24C2xC12C22xC6C2xC8C22xC4C12C2xC6C8C2xC4C23C6C4C22C2
# reps112121121121244224488

Matrix representation of C24:29D4 in GL4(F73) generated by

571600
575700
00072
00172
,
02700
27000
001330
004360
,
1000
07200
0001
0010
G:=sub<GL(4,GF(73))| [57,57,0,0,16,57,0,0,0,0,0,1,0,0,72,72],[0,27,0,0,27,0,0,0,0,0,13,43,0,0,30,60],[1,0,0,0,0,72,0,0,0,0,0,1,0,0,1,0] >;

C24:29D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_{29}D_4
% in TeX

G:=Group("C24:29D4");
// GroupNames label

G:=SmallGroup(192,674);
// by ID

G=gap.SmallGroup(192,674);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<