metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D12.3D4, Dic6.3D4, M4(2).2D6, C3:C8.25D4, C8:D6:6C2, D12.C4:6C2, (C2xD4).16D6, C4.D4:4S3, C4.149(S3xD4), C12.94(C2xD4), D12:6C22:1C2, C3:1(D4.4D4), (C2xC12).6C23, C12.53D4:2C2, C6.10(C4:D4), C4oD12.4C22, (C6xD4).16C22, C12.46D4:10C2, C2.13(Dic3:D4), (C2xD12).39C22, C4.Dic3.3C22, C22.14(C4oD12), (C3xM4(2)).19C22, (C2xD4:S3):1C2, (C2xC3:C8).2C22, (C3xC4.D4):2C2, (C2xC4).6(C22xS3), (C2xC6).31(C4oD4), SmallGroup(192,308)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12.3D4
G = < a,b,c,d | a12=b2=1, c4=a6, d2=a3, bab=a-1, cac-1=a7, ad=da, cbc-1=a6b, dbd-1=a3b, dcd-1=a9c3 >
Subgroups: 368 in 108 conjugacy classes, 35 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, D6, C2xC6, C2xC6, C2xC8, M4(2), M4(2), D8, SD16, C2xD4, C2xD4, C4oD4, C3:C8, C3:C8, C24, Dic6, C4xS3, D12, D12, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C4.D4, C4.D4, C8.C4, C8oD4, C2xD8, C8:C22, S3xC8, C8:S3, C24:C2, D24, C2xC3:C8, C4.Dic3, D4:S3, D4.S3, C3xM4(2), C2xD12, C4oD12, C6xD4, D4.4D4, C12.53D4, C12.46D4, C3xC4.D4, D12.C4, C8:D6, C2xD4:S3, D12:6C22, D12.3D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C4:D4, C4oD12, S3xD4, D4.4D4, Dic3:D4, D12.3D4
Character table of D12.3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 8 | 12 | 24 | 2 | 2 | 2 | 12 | 2 | 4 | 8 | 8 | 4 | 4 | 6 | 6 | 8 | 12 | 24 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | 1 | 1 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | 1 | 1 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -1 | -1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | 0 | -2 | 0 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2i | -2i | 0 | complex lifted from C4oD4 |
ρ18 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | -2i | 2i | 0 | complex lifted from C4oD4 |
ρ19 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | √-3 | -√-3 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -√3 | -i | i | √3 | complex lifted from C4oD12 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | -√-3 | √-3 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | √3 | -i | i | -√3 | complex lifted from C4oD12 |
ρ21 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | -√-3 | √-3 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -√3 | i | -i | √3 | complex lifted from C4oD12 |
ρ22 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | √-3 | -√-3 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | √3 | i | -i | -√3 | complex lifted from C4oD12 |
ρ23 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 4 | -4 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | -4 | 4 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ27 | 8 | -8 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 48)(8 47)(9 46)(10 45)(11 44)(12 43)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)
(1 34 10 25 7 28 4 31)(2 29 11 32 8 35 5 26)(3 36 12 27 9 30 6 33)(13 37 22 40 19 43 16 46)(14 44 23 47 20 38 17 41)(15 39 24 42 21 45 18 48)
(1 46 4 37 7 40 10 43)(2 47 5 38 8 41 11 44)(3 48 6 39 9 42 12 45)(13 31 16 34 19 25 22 28)(14 32 17 35 20 26 23 29)(15 33 18 36 21 27 24 30)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (1,34,10,25,7,28,4,31)(2,29,11,32,8,35,5,26)(3,36,12,27,9,30,6,33)(13,37,22,40,19,43,16,46)(14,44,23,47,20,38,17,41)(15,39,24,42,21,45,18,48), (1,46,4,37,7,40,10,43)(2,47,5,38,8,41,11,44)(3,48,6,39,9,42,12,45)(13,31,16,34,19,25,22,28)(14,32,17,35,20,26,23,29)(15,33,18,36,21,27,24,30)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (1,34,10,25,7,28,4,31)(2,29,11,32,8,35,5,26)(3,36,12,27,9,30,6,33)(13,37,22,40,19,43,16,46)(14,44,23,47,20,38,17,41)(15,39,24,42,21,45,18,48), (1,46,4,37,7,40,10,43)(2,47,5,38,8,41,11,44)(3,48,6,39,9,42,12,45)(13,31,16,34,19,25,22,28)(14,32,17,35,20,26,23,29)(15,33,18,36,21,27,24,30) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,48),(8,47),(9,46),(10,45),(11,44),(12,43),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25)], [(1,34,10,25,7,28,4,31),(2,29,11,32,8,35,5,26),(3,36,12,27,9,30,6,33),(13,37,22,40,19,43,16,46),(14,44,23,47,20,38,17,41),(15,39,24,42,21,45,18,48)], [(1,46,4,37,7,40,10,43),(2,47,5,38,8,41,11,44),(3,48,6,39,9,42,12,45),(13,31,16,34,19,25,22,28),(14,32,17,35,20,26,23,29),(15,33,18,36,21,27,24,30)]])
Matrix representation of D12.3D4 ►in GL6(F73)
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 65 | 65 | 72 | 3 |
0 | 0 | 46 | 0 | 48 | 1 |
72 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 61 | 0 | 70 | 41 |
0 | 0 | 6 | 0 | 38 | 0 |
0 | 0 | 48 | 25 | 12 | 55 |
0 | 0 | 57 | 41 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 48 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 70 | 70 | 27 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 3 | 32 |
0 | 0 | 67 | 0 | 35 | 41 |
0 | 0 | 25 | 48 | 61 | 18 |
0 | 0 | 57 | 0 | 0 | 0 |
G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,72,65,46,0,0,2,72,65,0,0,0,0,0,72,48,0,0,0,0,3,1],[72,0,0,0,0,0,1,1,0,0,0,0,0,0,61,6,48,57,0,0,0,0,25,41,0,0,70,38,12,0,0,0,41,0,55,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,70,72,0,0,0,0,70,72,0,0,48,0,27,0,0,0,0,1,0,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,12,67,25,57,0,0,0,0,48,0,0,0,3,35,61,0,0,0,32,41,18,0] >;
D12.3D4 in GAP, Magma, Sage, TeX
D_{12}._3D_4
% in TeX
G:=Group("D12.3D4");
// GroupNames label
G:=SmallGroup(192,308);
// by ID
G=gap.SmallGroup(192,308);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,555,297,136,1684,851,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=1,c^4=a^6,d^2=a^3,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^6*b,d*b*d^-1=a^3*b,d*c*d^-1=a^9*c^3>;
// generators/relations
Export