Extensions 1→N→G→Q→1 with N=D12.C4 and Q=C2

Direct product G=NxQ with N=D12.C4 and Q=C2
dρLabelID
C2xD12.C496C2xD12.C4192,1303

Semidirect products G=N:Q with N=D12.C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D12.C4:1C2 = D8:5D6φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:1C2192,1333
D12.C4:2C2 = D8:6D6φ: C2/C1C2 ⊆ Out D12.C4488-D12.C4:2C2192,1334
D12.C4:3C2 = C24.C23φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:3C2192,1337
D12.C4:4C2 = SD16.D6φ: C2/C1C2 ⊆ Out D12.C4968-D12.C4:4C2192,1338
D12.C4:5C2 = D12.2D4φ: C2/C1C2 ⊆ Out D12.C4488-D12.C4:5C2192,307
D12.C4:6C2 = D12.3D4φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:6C2192,308
D12.C4:7C2 = D12.6D4φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:7C2192,313
D12.C4:8C2 = M4(2).22D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:8C2192,382
D12.C4:9C2 = C42.196D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:9C2192,383
D12.C4:10C2 = D24:10C4φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:10C2192,453
D12.C4:11C2 = D24:7C4φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:11C2192,454
D12.C4:12C2 = M4(2):26D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:12C2192,1304
D12.C4:13C2 = M4(2):28D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:13C2192,1309
D12.C4:14C2 = S3xC8oD4φ: trivial image484D12.C4:14C2192,1308

Non-split extensions G=N.Q with N=D12.C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D12.C4.C2 = D12.7D4φ: C2/C1C2 ⊆ Out D12.C4968-D12.C4.C2192,314

׿
x
:
Z
F
o
wr
Q
<