Copied to
clipboard

G = D6:5Q16order 192 = 26·3

2nd semidirect product of D6 and Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:5Q16, Dic6.17D4, D6:C8.9C2, (C2xQ16):3S3, (C2xC8).38D6, C4.67(S3xD4), (C3xQ8).9D4, (C6xQ16):13C2, C12.52(C2xD4), (C2xQ8).86D6, C6.29(C2xQ16), C2.18(S3xQ16), C6.61C22wrC2, D6:3Q8.7C2, C3:4(C22:Q16), Q8:2Dic3:33C2, C2.Dic12:18C2, (C2xDic3).76D4, Q8.15(C3:D4), (C22xS3).93D4, C22.277(S3xD4), (C6xQ8).89C22, C2.29(C23:2D6), (C2xC12).460C23, (C2xC24).180C22, C2.28(Q16:S3), C6.78(C8.C22), C4:Dic3.183C22, (C2xDic6).132C22, (C2xS3xQ8).5C2, C4.48(C2xC3:D4), (C2xC3:Q16):20C2, (C2xC6).371(C2xD4), (S3xC2xC4).52C22, (C2xC3:C8).165C22, (C2xC4).548(C22xS3), SmallGroup(192,745)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D6:5Q16
C1C3C6C2xC6C2xC12S3xC2xC4C2xS3xQ8 — D6:5Q16
C3C6C2xC12 — D6:5Q16
C1C22C2xC4C2xQ16

Generators and relations for D6:5Q16
 G = < a,b,c,d | a6=b2=c8=1, d2=c4, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a3b, dcd-1=c-1 >

Subgroups: 408 in 148 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, Q8, Q8, C23, Dic3, C12, C12, D6, D6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, Q16, C22xC4, C2xQ8, C2xQ8, C3:C8, C24, Dic6, Dic6, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C3xQ8, C22xS3, C22:C8, Q8:C4, C22:Q8, C2xQ16, C2xQ16, C22xQ8, C2xC3:C8, Dic3:C4, C4:Dic3, D6:C4, C3:Q16, C2xC24, C3xQ16, C2xDic6, C2xDic6, S3xC2xC4, S3xC2xC4, S3xQ8, C6xQ8, C22:Q16, C2.Dic12, D6:C8, Q8:2Dic3, C2xC3:Q16, D6:3Q8, C6xQ16, C2xS3xQ8, D6:5Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2xD4, C3:D4, C22xS3, C22wrC2, C2xQ16, C8.C22, S3xD4, C2xC3:D4, C22:Q16, S3xQ16, Q16:S3, C23:2D6, D6:5Q16

Smallest permutation representation of D6:5Q16
On 96 points
Generators in S96
(1 49 31 87 9 74)(2 50 32 88 10 75)(3 51 25 81 11 76)(4 52 26 82 12 77)(5 53 27 83 13 78)(6 54 28 84 14 79)(7 55 29 85 15 80)(8 56 30 86 16 73)(17 71 91 60 47 36)(18 72 92 61 48 37)(19 65 93 62 41 38)(20 66 94 63 42 39)(21 67 95 64 43 40)(22 68 96 57 44 33)(23 69 89 58 45 34)(24 70 90 59 46 35)
(1 78)(2 28)(3 80)(4 30)(5 74)(6 32)(7 76)(8 26)(9 53)(10 14)(11 55)(12 16)(13 49)(15 51)(17 95)(18 33)(19 89)(20 35)(21 91)(22 37)(23 93)(24 39)(25 85)(27 87)(29 81)(31 83)(34 62)(36 64)(38 58)(40 60)(41 45)(42 70)(43 47)(44 72)(46 66)(48 68)(50 54)(52 56)(57 92)(59 94)(61 96)(63 90)(65 69)(67 71)(73 82)(75 84)(77 86)(79 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 64 5 60)(2 63 6 59)(3 62 7 58)(4 61 8 57)(9 67 13 71)(10 66 14 70)(11 65 15 69)(12 72 16 68)(17 87 21 83)(18 86 22 82)(19 85 23 81)(20 84 24 88)(25 38 29 34)(26 37 30 33)(27 36 31 40)(28 35 32 39)(41 55 45 51)(42 54 46 50)(43 53 47 49)(44 52 48 56)(73 96 77 92)(74 95 78 91)(75 94 79 90)(76 93 80 89)

G:=sub<Sym(96)| (1,49,31,87,9,74)(2,50,32,88,10,75)(3,51,25,81,11,76)(4,52,26,82,12,77)(5,53,27,83,13,78)(6,54,28,84,14,79)(7,55,29,85,15,80)(8,56,30,86,16,73)(17,71,91,60,47,36)(18,72,92,61,48,37)(19,65,93,62,41,38)(20,66,94,63,42,39)(21,67,95,64,43,40)(22,68,96,57,44,33)(23,69,89,58,45,34)(24,70,90,59,46,35), (1,78)(2,28)(3,80)(4,30)(5,74)(6,32)(7,76)(8,26)(9,53)(10,14)(11,55)(12,16)(13,49)(15,51)(17,95)(18,33)(19,89)(20,35)(21,91)(22,37)(23,93)(24,39)(25,85)(27,87)(29,81)(31,83)(34,62)(36,64)(38,58)(40,60)(41,45)(42,70)(43,47)(44,72)(46,66)(48,68)(50,54)(52,56)(57,92)(59,94)(61,96)(63,90)(65,69)(67,71)(73,82)(75,84)(77,86)(79,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,64,5,60)(2,63,6,59)(3,62,7,58)(4,61,8,57)(9,67,13,71)(10,66,14,70)(11,65,15,69)(12,72,16,68)(17,87,21,83)(18,86,22,82)(19,85,23,81)(20,84,24,88)(25,38,29,34)(26,37,30,33)(27,36,31,40)(28,35,32,39)(41,55,45,51)(42,54,46,50)(43,53,47,49)(44,52,48,56)(73,96,77,92)(74,95,78,91)(75,94,79,90)(76,93,80,89)>;

G:=Group( (1,49,31,87,9,74)(2,50,32,88,10,75)(3,51,25,81,11,76)(4,52,26,82,12,77)(5,53,27,83,13,78)(6,54,28,84,14,79)(7,55,29,85,15,80)(8,56,30,86,16,73)(17,71,91,60,47,36)(18,72,92,61,48,37)(19,65,93,62,41,38)(20,66,94,63,42,39)(21,67,95,64,43,40)(22,68,96,57,44,33)(23,69,89,58,45,34)(24,70,90,59,46,35), (1,78)(2,28)(3,80)(4,30)(5,74)(6,32)(7,76)(8,26)(9,53)(10,14)(11,55)(12,16)(13,49)(15,51)(17,95)(18,33)(19,89)(20,35)(21,91)(22,37)(23,93)(24,39)(25,85)(27,87)(29,81)(31,83)(34,62)(36,64)(38,58)(40,60)(41,45)(42,70)(43,47)(44,72)(46,66)(48,68)(50,54)(52,56)(57,92)(59,94)(61,96)(63,90)(65,69)(67,71)(73,82)(75,84)(77,86)(79,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,64,5,60)(2,63,6,59)(3,62,7,58)(4,61,8,57)(9,67,13,71)(10,66,14,70)(11,65,15,69)(12,72,16,68)(17,87,21,83)(18,86,22,82)(19,85,23,81)(20,84,24,88)(25,38,29,34)(26,37,30,33)(27,36,31,40)(28,35,32,39)(41,55,45,51)(42,54,46,50)(43,53,47,49)(44,52,48,56)(73,96,77,92)(74,95,78,91)(75,94,79,90)(76,93,80,89) );

G=PermutationGroup([[(1,49,31,87,9,74),(2,50,32,88,10,75),(3,51,25,81,11,76),(4,52,26,82,12,77),(5,53,27,83,13,78),(6,54,28,84,14,79),(7,55,29,85,15,80),(8,56,30,86,16,73),(17,71,91,60,47,36),(18,72,92,61,48,37),(19,65,93,62,41,38),(20,66,94,63,42,39),(21,67,95,64,43,40),(22,68,96,57,44,33),(23,69,89,58,45,34),(24,70,90,59,46,35)], [(1,78),(2,28),(3,80),(4,30),(5,74),(6,32),(7,76),(8,26),(9,53),(10,14),(11,55),(12,16),(13,49),(15,51),(17,95),(18,33),(19,89),(20,35),(21,91),(22,37),(23,93),(24,39),(25,85),(27,87),(29,81),(31,83),(34,62),(36,64),(38,58),(40,60),(41,45),(42,70),(43,47),(44,72),(46,66),(48,68),(50,54),(52,56),(57,92),(59,94),(61,96),(63,90),(65,69),(67,71),(73,82),(75,84),(77,86),(79,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,64,5,60),(2,63,6,59),(3,62,7,58),(4,61,8,57),(9,67,13,71),(10,66,14,70),(11,65,15,69),(12,72,16,68),(17,87,21,83),(18,86,22,82),(19,85,23,81),(20,84,24,88),(25,38,29,34),(26,37,30,33),(27,36,31,40),(28,35,32,39),(41,55,45,51),(42,54,46,50),(43,53,47,49),(44,52,48,56),(73,96,77,92),(74,95,78,91),(75,94,79,90),(76,93,80,89)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222223444444444666888812121212121224242424
size111166222448121212242224412124488884444

33 irreducible representations

dim1111111122222222244444
type+++++++++++++++--++-
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6Q16C3:D4C8.C22S3xD4S3xD4S3xQ16Q16:S3
kernelD6:5Q16C2.Dic12D6:C8Q8:2Dic3C2xC3:Q16D6:3Q8C6xQ16C2xS3xQ8C2xQ16Dic6C2xDic3C3xQ8C22xS3C2xC8C2xQ8D6Q8C6C4C22C2C2
# reps1111111112121124411122

Matrix representation of D6:5Q16 in GL4(F73) generated by

1000
0100
0001
00721
,
72000
07200
00721
0001
,
04100
164100
003013
006043
,
61400
136700
003013
006043
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,1],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,1,1],[0,16,0,0,41,41,0,0,0,0,30,60,0,0,13,43],[6,13,0,0,14,67,0,0,0,0,30,60,0,0,13,43] >;

D6:5Q16 in GAP, Magma, Sage, TeX

D_6\rtimes_5Q_{16}
% in TeX

G:=Group("D6:5Q16");
// GroupNames label

G:=SmallGroup(192,745);
// by ID

G=gap.SmallGroup(192,745);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,184,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<