Copied to
clipboard

G = C6.402+ 1+4order 192 = 26·3

40th non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C2xD4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.402+ 1+4, C4:C4:6D6, C3:D4:2D4, (C2xD4):24D6, D6:8(C4oD4), C4:D4:13S3, C3:5(D4:5D4), C22:C4:27D6, D6.17(C2xD4), (C22xC4):21D6, C23:2D6:23C2, Dic3:D4:21C2, C22.6(S3xD4), D6:C4:67C22, D6:Q8:14C2, (C6xD4):30C22, C6.69(C22xD4), Dic3:4D4:9C2, D6.D4:12C2, (C2xC6).154C24, (C2xC12).41C23, Dic3.22(C2xD4), C23.14D6:30C2, C2.42(D4:6D6), Dic3:C4:16C22, (C22xC12):40C22, (C2xDic6):25C22, (C4xDic3):54C22, C23.23D6:9C2, (C22xC6).21C23, C23.11D6:19C2, (C2xD12).143C22, C6.D4:52C22, (S3xC23).47C22, C22.175(S3xC23), C23.192(C22xS3), (C2xDic3).74C23, (C22xS3).188C23, (C22xDic3):20C22, (C2xS3xD4):12C2, C2.42(C2xS3xD4), (C2xC6).6(C2xD4), (C2xD6:C4):36C2, (C4xC3:D4):54C2, (S3xC22:C4):5C2, (S3xC2xC4):50C22, C2.39(S3xC4oD4), (C3xC4:D4):16C2, (C3xC4:C4):12C22, C6.152(C2xC4oD4), (C2xD4:2S3):14C2, (C2xC3:D4):16C22, (C3xC22:C4):14C22, (C2xC4).177(C22xS3), SmallGroup(192,1169)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C6.402+ 1+4
C1C3C6C2xC6C22xS3S3xC23C2xS3xD4 — C6.402+ 1+4
C3C2xC6 — C6.402+ 1+4
C1C22C4:D4

Generators and relations for C6.402+ 1+4
 G = < a,b,c,d,e | a6=b4=c2=1, d2=b2, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, dbd-1=ebe-1=a3b, cd=dc, ce=ec, ede-1=a3b2d >

Subgroups: 992 in 334 conjugacy classes, 105 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C4:D4, C22:Q8, C22.D4, C4.4D4, C22xD4, C2xC4oD4, C4xDic3, Dic3:C4, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C2xD12, S3xD4, D4:2S3, C22xDic3, C2xC3:D4, C22xC12, C6xD4, S3xC23, D4:5D4, S3xC22:C4, Dic3:4D4, Dic3:D4, C23.11D6, D6.D4, D6:Q8, C2xD6:C4, C4xC3:D4, C23.23D6, C23:2D6, C23.14D6, C3xC4:D4, C2xS3xD4, C2xD4:2S3, C6.402+ 1+4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C22xD4, C2xC4oD4, 2+ 1+4, S3xD4, S3xC23, D4:5D4, C2xS3xD4, D4:6D6, S3xC4oD4, C6.402+ 1+4

Smallest permutation representation of C6.402+ 1+4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 28 7 34)(2 29 8 35)(3 30 9 36)(4 25 10 31)(5 26 11 32)(6 27 12 33)(13 40 19 46)(14 41 20 47)(15 42 21 48)(16 37 22 43)(17 38 23 44)(18 39 24 45)
(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 22 7 16)(2 21 8 15)(3 20 9 14)(4 19 10 13)(5 24 11 18)(6 23 12 17)(25 43 31 37)(26 48 32 42)(27 47 33 41)(28 46 34 40)(29 45 35 39)(30 44 36 38)
(1 16 4 13)(2 17 5 14)(3 18 6 15)(7 22 10 19)(8 23 11 20)(9 24 12 21)(25 37 28 40)(26 38 29 41)(27 39 30 42)(31 43 34 46)(32 44 35 47)(33 45 36 48)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,19,46)(14,41,20,47)(15,42,21,48)(16,37,22,43)(17,38,23,44)(18,39,24,45), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,22,7,16)(2,21,8,15)(3,20,9,14)(4,19,10,13)(5,24,11,18)(6,23,12,17)(25,43,31,37)(26,48,32,42)(27,47,33,41)(28,46,34,40)(29,45,35,39)(30,44,36,38), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,19,46)(14,41,20,47)(15,42,21,48)(16,37,22,43)(17,38,23,44)(18,39,24,45), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,22,7,16)(2,21,8,15)(3,20,9,14)(4,19,10,13)(5,24,11,18)(6,23,12,17)(25,43,31,37)(26,48,32,42)(27,47,33,41)(28,46,34,40)(29,45,35,39)(30,44,36,38), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,28,7,34),(2,29,8,35),(3,30,9,36),(4,25,10,31),(5,26,11,32),(6,27,12,33),(13,40,19,46),(14,41,20,47),(15,42,21,48),(16,37,22,43),(17,38,23,44),(18,39,24,45)], [(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,22,7,16),(2,21,8,15),(3,20,9,14),(4,19,10,13),(5,24,11,18),(6,23,12,17),(25,43,31,37),(26,48,32,42),(27,47,33,41),(28,46,34,40),(29,45,35,39),(30,44,36,38)], [(1,16,4,13),(2,17,5,14),(3,18,6,15),(7,22,10,19),(8,23,11,20),(9,24,12,21),(25,37,28,40),(26,38,29,41),(27,39,30,42),(31,43,34,46),(32,44,35,47),(33,45,36,48)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E6F6G12A12B12C12D12E12F
order122222222222234444444444446666666121212121212
size1111224466661222244466661212122224488444488

39 irreducible representations

dim11111111111111122222224444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4oD42+ 1+4S3xD4D4:6D6S3xC4oD4
kernelC6.402+ 1+4S3xC22:C4Dic3:4D4Dic3:D4C23.11D6D6.D4D6:Q8C2xD6:C4C4xC3:D4C23.23D6C23:2D6C23.14D6C3xC4:D4C2xS3xD4C2xD4:2S3C4:D4C3:D4C22:C4C4:C4C22xC4C2xD4D6C6C22C2C2
# reps11111111112111114211341222

Matrix representation of C6.402+ 1+4 in GL6(F13)

1200000
0120000
00121200
001000
0000120
0000012
,
010000
1200000
0012000
0001200
0000120
000031
,
100000
0120000
001000
000100
000010
000001
,
800000
050000
001000
00121200
000081
000025
,
500000
080000
001000
000100
0000512
000008

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,3,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,8,2,0,0,0,0,1,5],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,12,8] >;

C6.402+ 1+4 in GAP, Magma, Sage, TeX

C_6._{40}2_+^{1+4}
% in TeX

G:=Group("C6.40ES+(2,2)");
// GroupNames label

G:=SmallGroup(192,1169);
// by ID

G=gap.SmallGroup(192,1169);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,1571,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^4=c^2=1,d^2=b^2,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,d*b*d^-1=e*b*e^-1=a^3*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^3*b^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<