Copied to
clipboard

G = D8.10D6order 192 = 26·3

The non-split extension by D8 of D6 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8.10D6, D12.47D4, Q16.12D6, SD16.2D6, C24.39C23, C12.18C24, Dic6.47D4, Dic6.12C23, Dic12.16C22, C4oD8:6S3, C3:3(Q8oD8), C8oD12:8C2, Q8oD12:6C2, (S3xQ16):7C2, C3:D4.3D4, C3:C8.9C23, D8:3S3:7C2, C4oD4.29D6, D6.31(C2xD4), (C2xC8).106D6, C4.145(S3xD4), D4.D6:6C2, D4.S3.C22, Q8.14D6:8C2, C12.351(C2xD4), (S3xC8).8C22, C4.18(S3xC23), C8.18(C22xS3), C22.10(S3xD4), (C2xDic12):23C2, (S3xQ8).2C22, (C4xS3).11C23, C8:S3.2C22, Dic3.36(C2xD4), (C3xD4).12C23, (C3xD8).10C22, D4.12(C22xS3), C6.119(C22xD4), (C3xQ8).12C23, Q8.22(C22xS3), C3:Q16.2C22, (C2xC24).106C22, (C2xC12).535C23, C4oD12.56C22, D4:2S3.2C22, (C3xQ16).12C22, (C3xSD16).2C22, C4.Dic3.49C22, (C2xDic6).200C22, C2.92(C2xS3xD4), (C3xC4oD8):6C2, (C2xC6).15(C2xD4), (C2xC4).234(C22xS3), (C3xC4oD4).23C22, SmallGroup(192,1330)

Series: Derived Chief Lower central Upper central

C1C12 — D8.10D6
C1C3C6C12C4xS3C4oD12Q8oD12 — D8.10D6
C3C6C12 — D8.10D6
C1C2C2xC4C4oD8

Generators and relations for D8.10D6
 G = < a,b,c,d | a8=b2=c6=1, d2=a4, bab=a-1, ac=ca, ad=da, cbc-1=a4b, bd=db, dcd-1=a4c-1 >

Subgroups: 600 in 248 conjugacy classes, 99 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC8, C2xC8, M4(2), D8, SD16, SD16, Q16, Q16, C2xQ8, C4oD4, C4oD4, C3:C8, C24, Dic6, Dic6, Dic6, C4xS3, C4xS3, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C8oD4, C2xQ16, C4oD8, C4oD8, C8.C22, 2- 1+4, S3xC8, C8:S3, Dic12, C4.Dic3, D4.S3, C3:Q16, C2xC24, C3xD8, C3xSD16, C3xQ16, C2xDic6, C2xDic6, C4oD12, C4oD12, D4:2S3, D4:2S3, S3xQ8, C3xC4oD4, Q8oD8, C8oD12, C2xDic12, D8:3S3, D4.D6, S3xQ16, Q8.14D6, C3xC4oD8, Q8oD12, D8.10D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, S3xD4, S3xC23, Q8oD8, C2xS3xD4, D8.10D6

Smallest permutation representation of D8.10D6
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 64)(9 80)(10 79)(11 78)(12 77)(13 76)(14 75)(15 74)(16 73)(17 34)(18 33)(19 40)(20 39)(21 38)(22 37)(23 36)(24 35)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 48)(32 47)(49 90)(50 89)(51 96)(52 95)(53 94)(54 93)(55 92)(56 91)(65 85)(66 84)(67 83)(68 82)(69 81)(70 88)(71 87)(72 86)
(1 85 54 37 73 46)(2 86 55 38 74 47)(3 87 56 39 75 48)(4 88 49 40 76 41)(5 81 50 33 77 42)(6 82 51 34 78 43)(7 83 52 35 79 44)(8 84 53 36 80 45)(9 30 64 70 94 19)(10 31 57 71 95 20)(11 32 58 72 96 21)(12 25 59 65 89 22)(13 26 60 66 90 23)(14 27 61 67 91 24)(15 28 62 68 92 17)(16 29 63 69 93 18)
(1 46 5 42)(2 47 6 43)(3 48 7 44)(4 41 8 45)(9 66 13 70)(10 67 14 71)(11 68 15 72)(12 69 16 65)(17 92 21 96)(18 93 22 89)(19 94 23 90)(20 95 24 91)(25 59 29 63)(26 60 30 64)(27 61 31 57)(28 62 32 58)(33 54 37 50)(34 55 38 51)(35 56 39 52)(36 49 40 53)(73 85 77 81)(74 86 78 82)(75 87 79 83)(76 88 80 84)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,64)(9,80)(10,79)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,34)(18,33)(19,40)(20,39)(21,38)(22,37)(23,36)(24,35)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,48)(32,47)(49,90)(50,89)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(65,85)(66,84)(67,83)(68,82)(69,81)(70,88)(71,87)(72,86), (1,85,54,37,73,46)(2,86,55,38,74,47)(3,87,56,39,75,48)(4,88,49,40,76,41)(5,81,50,33,77,42)(6,82,51,34,78,43)(7,83,52,35,79,44)(8,84,53,36,80,45)(9,30,64,70,94,19)(10,31,57,71,95,20)(11,32,58,72,96,21)(12,25,59,65,89,22)(13,26,60,66,90,23)(14,27,61,67,91,24)(15,28,62,68,92,17)(16,29,63,69,93,18), (1,46,5,42)(2,47,6,43)(3,48,7,44)(4,41,8,45)(9,66,13,70)(10,67,14,71)(11,68,15,72)(12,69,16,65)(17,92,21,96)(18,93,22,89)(19,94,23,90)(20,95,24,91)(25,59,29,63)(26,60,30,64)(27,61,31,57)(28,62,32,58)(33,54,37,50)(34,55,38,51)(35,56,39,52)(36,49,40,53)(73,85,77,81)(74,86,78,82)(75,87,79,83)(76,88,80,84)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,64)(9,80)(10,79)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,34)(18,33)(19,40)(20,39)(21,38)(22,37)(23,36)(24,35)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,48)(32,47)(49,90)(50,89)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(65,85)(66,84)(67,83)(68,82)(69,81)(70,88)(71,87)(72,86), (1,85,54,37,73,46)(2,86,55,38,74,47)(3,87,56,39,75,48)(4,88,49,40,76,41)(5,81,50,33,77,42)(6,82,51,34,78,43)(7,83,52,35,79,44)(8,84,53,36,80,45)(9,30,64,70,94,19)(10,31,57,71,95,20)(11,32,58,72,96,21)(12,25,59,65,89,22)(13,26,60,66,90,23)(14,27,61,67,91,24)(15,28,62,68,92,17)(16,29,63,69,93,18), (1,46,5,42)(2,47,6,43)(3,48,7,44)(4,41,8,45)(9,66,13,70)(10,67,14,71)(11,68,15,72)(12,69,16,65)(17,92,21,96)(18,93,22,89)(19,94,23,90)(20,95,24,91)(25,59,29,63)(26,60,30,64)(27,61,31,57)(28,62,32,58)(33,54,37,50)(34,55,38,51)(35,56,39,52)(36,49,40,53)(73,85,77,81)(74,86,78,82)(75,87,79,83)(76,88,80,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,64),(9,80),(10,79),(11,78),(12,77),(13,76),(14,75),(15,74),(16,73),(17,34),(18,33),(19,40),(20,39),(21,38),(22,37),(23,36),(24,35),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,48),(32,47),(49,90),(50,89),(51,96),(52,95),(53,94),(54,93),(55,92),(56,91),(65,85),(66,84),(67,83),(68,82),(69,81),(70,88),(71,87),(72,86)], [(1,85,54,37,73,46),(2,86,55,38,74,47),(3,87,56,39,75,48),(4,88,49,40,76,41),(5,81,50,33,77,42),(6,82,51,34,78,43),(7,83,52,35,79,44),(8,84,53,36,80,45),(9,30,64,70,94,19),(10,31,57,71,95,20),(11,32,58,72,96,21),(12,25,59,65,89,22),(13,26,60,66,90,23),(14,27,61,67,91,24),(15,28,62,68,92,17),(16,29,63,69,93,18)], [(1,46,5,42),(2,47,6,43),(3,48,7,44),(4,41,8,45),(9,66,13,70),(10,67,14,71),(11,68,15,72),(12,69,16,65),(17,92,21,96),(18,93,22,89),(19,94,23,90),(20,95,24,91),(25,59,29,63),(26,60,30,64),(27,61,31,57),(28,62,32,58),(33,54,37,50),(34,55,38,51),(35,56,39,52),(36,49,40,53),(73,85,77,81),(74,86,78,82),(75,87,79,83),(76,88,80,84)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D8A8B8C8D8E12A12B12C12D12E24A24B24C24D
order122222234444444444666688888121212121224242424
size112446622244661212121224882241212224884444

36 irreducible representations

dim1111111112222222224444
type++++++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6D6D6S3xD4S3xD4Q8oD8D8.10D6
kernelD8.10D6C8oD12C2xDic12D8:3S3D4.D6S3xQ16Q8.14D6C3xC4oD8Q8oD12C4oD8Dic6D12C3:D4C2xC8D8SD16Q16C4oD4C4C22C3C1
# reps1112422121112112121124

Matrix representation of D8.10D6 in GL4(F73) generated by

160160
016016
570160
057016
,
42113162
62311142
31623162
11421142
,
00766
00714
66700
665900
,
00667
00147
76600
596600
G:=sub<GL(4,GF(73))| [16,0,57,0,0,16,0,57,16,0,16,0,0,16,0,16],[42,62,31,11,11,31,62,42,31,11,31,11,62,42,62,42],[0,0,66,66,0,0,7,59,7,7,0,0,66,14,0,0],[0,0,7,59,0,0,66,66,66,14,0,0,7,7,0,0] >;

D8.10D6 in GAP, Magma, Sage, TeX

D_8._{10}D_6
% in TeX

G:=Group("D8.10D6");
// GroupNames label

G:=SmallGroup(192,1330);
// by ID

G=gap.SmallGroup(192,1330);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,387,184,570,185,136,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=a^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^4*b,b*d=d*b,d*c*d^-1=a^4*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<