Copied to
clipboard

G = C6xDic9order 216 = 23·33

Direct product of C6 and Dic9

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C6xDic9, C18:3C12, C6.22D18, C62.9S3, C9:5(C2xC12), (C3xC18):2C4, (C2xC6).6D9, C2.2(C6xD9), C22.(C3xD9), C6.15(S3xC6), (C2xC18).5C6, (C6xC18).2C2, (C3xC6).48D6, C18.12(C2xC6), C6.4(C3xDic3), C3.1(C6xDic3), (C3xC6).8Dic3, (C3xC18).16C22, C32.3(C2xDic3), (C3xC9):8(C2xC4), (C2xC6).10(C3xS3), SmallGroup(216,55)

Series: Derived Chief Lower central Upper central

C1C9 — C6xDic9
C1C3C9C18C3xC18C3xDic9 — C6xDic9
C9 — C6xDic9
C1C2xC6

Generators and relations for C6xDic9
 G = < a,b,c | a6=b18=1, c2=b9, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 128 in 58 conjugacy classes, 36 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2xC4, C9, C9, C32, Dic3, C12, C2xC6, C2xC6, C18, C18, C18, C3xC6, C3xC6, C2xDic3, C2xC12, C3xC9, Dic9, C2xC18, C2xC18, C3xDic3, C62, C3xC18, C3xC18, C2xDic9, C6xDic3, C3xDic9, C6xC18, C6xDic9
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, Dic3, C12, D6, C2xC6, D9, C3xS3, C2xDic3, C2xC12, Dic9, D18, C3xDic3, S3xC6, C3xD9, C2xDic9, C6xDic3, C3xDic9, C6xD9, C6xDic9

Smallest permutation representation of C6xDic9
On 72 points
Generators in S72
(1 33 13 27 7 21)(2 34 14 28 8 22)(3 35 15 29 9 23)(4 36 16 30 10 24)(5 19 17 31 11 25)(6 20 18 32 12 26)(37 57 43 63 49 69)(38 58 44 64 50 70)(39 59 45 65 51 71)(40 60 46 66 52 72)(41 61 47 67 53 55)(42 62 48 68 54 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 50 10 41)(2 49 11 40)(3 48 12 39)(4 47 13 38)(5 46 14 37)(6 45 15 54)(7 44 16 53)(8 43 17 52)(9 42 18 51)(19 66 28 57)(20 65 29 56)(21 64 30 55)(22 63 31 72)(23 62 32 71)(24 61 33 70)(25 60 34 69)(26 59 35 68)(27 58 36 67)

G:=sub<Sym(72)| (1,33,13,27,7,21)(2,34,14,28,8,22)(3,35,15,29,9,23)(4,36,16,30,10,24)(5,19,17,31,11,25)(6,20,18,32,12,26)(37,57,43,63,49,69)(38,58,44,64,50,70)(39,59,45,65,51,71)(40,60,46,66,52,72)(41,61,47,67,53,55)(42,62,48,68,54,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,50,10,41)(2,49,11,40)(3,48,12,39)(4,47,13,38)(5,46,14,37)(6,45,15,54)(7,44,16,53)(8,43,17,52)(9,42,18,51)(19,66,28,57)(20,65,29,56)(21,64,30,55)(22,63,31,72)(23,62,32,71)(24,61,33,70)(25,60,34,69)(26,59,35,68)(27,58,36,67)>;

G:=Group( (1,33,13,27,7,21)(2,34,14,28,8,22)(3,35,15,29,9,23)(4,36,16,30,10,24)(5,19,17,31,11,25)(6,20,18,32,12,26)(37,57,43,63,49,69)(38,58,44,64,50,70)(39,59,45,65,51,71)(40,60,46,66,52,72)(41,61,47,67,53,55)(42,62,48,68,54,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,50,10,41)(2,49,11,40)(3,48,12,39)(4,47,13,38)(5,46,14,37)(6,45,15,54)(7,44,16,53)(8,43,17,52)(9,42,18,51)(19,66,28,57)(20,65,29,56)(21,64,30,55)(22,63,31,72)(23,62,32,71)(24,61,33,70)(25,60,34,69)(26,59,35,68)(27,58,36,67) );

G=PermutationGroup([[(1,33,13,27,7,21),(2,34,14,28,8,22),(3,35,15,29,9,23),(4,36,16,30,10,24),(5,19,17,31,11,25),(6,20,18,32,12,26),(37,57,43,63,49,69),(38,58,44,64,50,70),(39,59,45,65,51,71),(40,60,46,66,52,72),(41,61,47,67,53,55),(42,62,48,68,54,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,50,10,41),(2,49,11,40),(3,48,12,39),(4,47,13,38),(5,46,14,37),(6,45,15,54),(7,44,16,53),(8,43,17,52),(9,42,18,51),(19,66,28,57),(20,65,29,56),(21,64,30,55),(22,63,31,72),(23,62,32,71),(24,61,33,70),(25,60,34,69),(26,59,35,68),(27,58,36,67)]])

C6xDic9 is a maximal subgroup of   Dic9:Dic3  C18.Dic6  Dic3:Dic9  C6.18D36  D6:Dic9  Dic3.D18  D9xC2xC12

72 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D6A···6F6G···6O9A···9I12A···12H18A···18AA
order12223333344446···66···69···912···1218···18
size11111122299991···12···22···29···92···2

72 irreducible representations

dim11111111222222222222
type++++-++-+
imageC1C2C2C3C4C6C6C12S3Dic3D6D9C3xS3Dic9D18C3xDic3S3xC6C3xD9C3xDic9C6xD9
kernelC6xDic9C3xDic9C6xC18C2xDic9C3xC18Dic9C2xC18C18C62C3xC6C3xC6C2xC6C2xC6C6C6C6C6C22C2C2
# reps121244281213263426126

Matrix representation of C6xDic9 in GL3(F37) generated by

2700
0270
0027
,
100
0250
003
,
3600
001
0360
G:=sub<GL(3,GF(37))| [27,0,0,0,27,0,0,0,27],[1,0,0,0,25,0,0,0,3],[36,0,0,0,0,36,0,1,0] >;

C6xDic9 in GAP, Magma, Sage, TeX

C_6\times {\rm Dic}_9
% in TeX

G:=Group("C6xDic9");
// GroupNames label

G:=SmallGroup(216,55);
// by ID

G=gap.SmallGroup(216,55);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,3604,208,5189]);
// Polycyclic

G:=Group<a,b,c|a^6=b^18=1,c^2=b^9,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<