Copied to
clipboard

G = C5xS3xD4order 240 = 24·3·5

Direct product of C5, S3 and D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5xS3xD4, C20:6D6, D12:3C10, C60:7C22, C30.52C23, C12:(C2xC10), C3:2(D4xC10), C4:1(S3xC10), (C2xC10):7D6, C15:15(C2xD4), (S3xC20):6C2, (C4xS3):1C10, D6:2(C2xC10), (D4xC15):8C2, (C3xD4):2C10, (C5xD12):9C2, C3:D4:1C10, (C2xC30):7C22, C22:2(S3xC10), (C22xS3):2C10, Dic3:1(C2xC10), C6.5(C22xC10), (S3xC10):10C22, C10.42(C22xS3), (C5xDic3):8C22, (C2xC6):(C2xC10), (S3xC2xC10):6C2, C2.6(S3xC2xC10), (C5xC3:D4):5C2, SmallGroup(240,169)

Series: Derived Chief Lower central Upper central

C1C6 — C5xS3xD4
C1C3C6C30S3xC10S3xC2xC10 — C5xS3xD4
C3C6 — C5xS3xD4
C1C10C5xD4

Generators and relations for C5xS3xD4
 G = < a,b,c,d,e | a5=b3=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 240 in 108 conjugacy classes, 50 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, S3, C6, C6, C2xC4, D4, D4, C23, C10, C10, Dic3, C12, D6, D6, D6, C2xC6, C15, C2xD4, C20, C20, C2xC10, C2xC10, C4xS3, D12, C3:D4, C3xD4, C22xS3, C5xS3, C5xS3, C30, C30, C2xC20, C5xD4, C5xD4, C22xC10, S3xD4, C5xDic3, C60, S3xC10, S3xC10, S3xC10, C2xC30, D4xC10, S3xC20, C5xD12, C5xC3:D4, D4xC15, S3xC2xC10, C5xS3xD4
Quotients: C1, C2, C22, C5, S3, D4, C23, C10, D6, C2xD4, C2xC10, C22xS3, C5xS3, C5xD4, C22xC10, S3xD4, S3xC10, D4xC10, S3xC2xC10, C5xS3xD4

Smallest permutation representation of C5xS3xD4
On 60 points
Generators in S60
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 39 33)(2 40 34)(3 36 35)(4 37 31)(5 38 32)(6 20 13)(7 16 14)(8 17 15)(9 18 11)(10 19 12)(21 58 51)(22 59 52)(23 60 53)(24 56 54)(25 57 55)(26 41 47)(27 42 48)(28 43 49)(29 44 50)(30 45 46)
(6 13)(7 14)(8 15)(9 11)(10 12)(21 51)(22 52)(23 53)(24 54)(25 55)(31 37)(32 38)(33 39)(34 40)(35 36)(41 47)(42 48)(43 49)(44 50)(45 46)
(1 18 26 56)(2 19 27 57)(3 20 28 58)(4 16 29 59)(5 17 30 60)(6 49 21 35)(7 50 22 31)(8 46 23 32)(9 47 24 33)(10 48 25 34)(11 41 54 39)(12 42 55 40)(13 43 51 36)(14 44 52 37)(15 45 53 38)
(6 21)(7 22)(8 23)(9 24)(10 25)(11 54)(12 55)(13 51)(14 52)(15 53)(16 59)(17 60)(18 56)(19 57)(20 58)

G:=sub<Sym(60)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,39,33)(2,40,34)(3,36,35)(4,37,31)(5,38,32)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,58,51)(22,59,52)(23,60,53)(24,56,54)(25,57,55)(26,41,47)(27,42,48)(28,43,49)(29,44,50)(30,45,46), (6,13)(7,14)(8,15)(9,11)(10,12)(21,51)(22,52)(23,53)(24,54)(25,55)(31,37)(32,38)(33,39)(34,40)(35,36)(41,47)(42,48)(43,49)(44,50)(45,46), (1,18,26,56)(2,19,27,57)(3,20,28,58)(4,16,29,59)(5,17,30,60)(6,49,21,35)(7,50,22,31)(8,46,23,32)(9,47,24,33)(10,48,25,34)(11,41,54,39)(12,42,55,40)(13,43,51,36)(14,44,52,37)(15,45,53,38), (6,21)(7,22)(8,23)(9,24)(10,25)(11,54)(12,55)(13,51)(14,52)(15,53)(16,59)(17,60)(18,56)(19,57)(20,58)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,39,33)(2,40,34)(3,36,35)(4,37,31)(5,38,32)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,58,51)(22,59,52)(23,60,53)(24,56,54)(25,57,55)(26,41,47)(27,42,48)(28,43,49)(29,44,50)(30,45,46), (6,13)(7,14)(8,15)(9,11)(10,12)(21,51)(22,52)(23,53)(24,54)(25,55)(31,37)(32,38)(33,39)(34,40)(35,36)(41,47)(42,48)(43,49)(44,50)(45,46), (1,18,26,56)(2,19,27,57)(3,20,28,58)(4,16,29,59)(5,17,30,60)(6,49,21,35)(7,50,22,31)(8,46,23,32)(9,47,24,33)(10,48,25,34)(11,41,54,39)(12,42,55,40)(13,43,51,36)(14,44,52,37)(15,45,53,38), (6,21)(7,22)(8,23)(9,24)(10,25)(11,54)(12,55)(13,51)(14,52)(15,53)(16,59)(17,60)(18,56)(19,57)(20,58) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,39,33),(2,40,34),(3,36,35),(4,37,31),(5,38,32),(6,20,13),(7,16,14),(8,17,15),(9,18,11),(10,19,12),(21,58,51),(22,59,52),(23,60,53),(24,56,54),(25,57,55),(26,41,47),(27,42,48),(28,43,49),(29,44,50),(30,45,46)], [(6,13),(7,14),(8,15),(9,11),(10,12),(21,51),(22,52),(23,53),(24,54),(25,55),(31,37),(32,38),(33,39),(34,40),(35,36),(41,47),(42,48),(43,49),(44,50),(45,46)], [(1,18,26,56),(2,19,27,57),(3,20,28,58),(4,16,29,59),(5,17,30,60),(6,49,21,35),(7,50,22,31),(8,46,23,32),(9,47,24,33),(10,48,25,34),(11,41,54,39),(12,42,55,40),(13,43,51,36),(14,44,52,37),(15,45,53,38)], [(6,21),(7,22),(8,23),(9,24),(10,25),(11,54),(12,55),(13,51),(14,52),(15,53),(16,59),(17,60),(18,56),(19,57),(20,58)]])

C5xS3xD4 is a maximal subgroup of   D20:10D6  D12.9D10  D20:13D6  D12:14D10

75 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B5C5D6A6B6C10A10B10C10D10E···10L10M···10T10U···10AB 12 15A15B15C15D20A20B20C20D20E20F20G20H30A30B30C30D30E···30L60A60B60C60D
order1222222234455556661010101010···1010···1010···10121515151520202020202020203030303030···3060606060
size11223366226111124411112···23···36···6422222222666622224···44444

75 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10S3D4D6D6C5xS3C5xD4S3xC10S3xC10S3xD4C5xS3xD4
kernelC5xS3xD4S3xC20C5xD12C5xC3:D4D4xC15S3xC2xC10S3xD4C4xS3D12C3:D4C3xD4C22xS3C5xD4C5xS3C20C2xC10D4S3C4C22C5C1
# reps1112124448481212484814

Matrix representation of C5xS3xD4 in GL4(F61) generated by

20000
02000
00340
00034
,
06000
16000
0010
0001
,
0100
1000
0010
0001
,
60000
06000
0012
006060
,
1000
0100
0010
006060
G:=sub<GL(4,GF(61))| [20,0,0,0,0,20,0,0,0,0,34,0,0,0,0,34],[0,1,0,0,60,60,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[60,0,0,0,0,60,0,0,0,0,1,60,0,0,2,60],[1,0,0,0,0,1,0,0,0,0,1,60,0,0,0,60] >;

C5xS3xD4 in GAP, Magma, Sage, TeX

C_5\times S_3\times D_4
% in TeX

G:=Group("C5xS3xD4");
// GroupNames label

G:=SmallGroup(240,169);
// by ID

G=gap.SmallGroup(240,169);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-3,404,5765]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^3=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<