Copied to
clipboard

G = C3xC4oD24order 288 = 25·32

Direct product of C3 and C4oD24

direct product, metabelian, supersoluble, monomial

Aliases: C3xC4oD24, D24:7C6, C24.82D6, Dic12:7C6, C12.95D12, C62.87D4, (C6xC24):9C2, (C2xC24):6C6, (C2xC24):9S3, C24:C2:7C6, C4oD12:1C6, C8.17(S3xC6), C6.11(C6xD4), (C3xD24):15C2, C24.19(C2xC6), D12.7(C2xC6), C12.35(C3xD4), C6.99(C2xD12), (C2xC6).19D12, C2.13(C6xD12), C4.20(C3xD12), (C3xC12).140D4, (C2xC12).443D6, C32:16(C4oD8), Dic6.6(C2xC6), C22.1(C3xD12), (C3xDic12):15C2, C12.30(C22xC6), (C3xC24).57C22, (C3xC12).162C23, C12.217(C22xS3), (C6xC12).314C22, (C3xD12).46C22, (C3xDic6).46C22, (C2xC8):4(C3xS3), C3:1(C3xC4oD8), C4.28(S3xC2xC6), (C3xC4oD12):5C2, (C2xC4).80(S3xC6), (C2xC6).22(C3xD4), (C3xC24:C2):15C2, (C3xC6).181(C2xD4), (C2xC12).115(C2xC6), SmallGroup(288,675)

Series: Derived Chief Lower central Upper central

C1C12 — C3xC4oD24
C1C3C6C12C3xC12C3xD12C3xC4oD12 — C3xC4oD24
C3C6C12 — C3xC4oD24
C1C12C2xC12C2xC24

Generators and relations for C3xC4oD24
 G = < a,b,c,d | a3=b4=d2=1, c12=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c11 >

Subgroups: 346 in 135 conjugacy classes, 58 normal (42 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC8, D8, SD16, Q16, C4oD4, C3xS3, C3xC6, C3xC6, C24, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C4oD8, C3xDic3, C3xC12, S3xC6, C62, C24:C2, D24, Dic12, C2xC24, C2xC24, C3xD8, C3xSD16, C3xQ16, C4oD12, C3xC4oD4, C3xC24, C3xDic6, S3xC12, C3xD12, C3xC3:D4, C6xC12, C4oD24, C3xC4oD8, C3xC24:C2, C3xD24, C3xDic12, C6xC24, C3xC4oD12, C3xC4oD24
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, D12, C3xD4, C22xS3, C22xC6, C4oD8, S3xC6, C2xD12, C6xD4, C3xD12, S3xC2xC6, C4oD24, C3xC4oD8, C6xD12, C3xC4oD24

Smallest permutation representation of C3xC4oD24
On 48 points
Generators in S48
(1 9 17)(2 10 18)(3 11 19)(4 12 20)(5 13 21)(6 14 22)(7 15 23)(8 16 24)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(1 19 13 7)(2 20 14 8)(3 21 15 9)(4 22 16 10)(5 23 17 11)(6 24 18 12)(25 31 37 43)(26 32 38 44)(27 33 39 45)(28 34 40 46)(29 35 41 47)(30 36 42 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 48)(11 47)(12 46)(13 45)(14 44)(15 43)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 36)(23 35)(24 34)

G:=sub<Sym(48)| (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,19,13,7)(2,20,14,8)(3,21,15,9)(4,22,16,10)(5,23,17,11)(6,24,18,12)(25,31,37,43)(26,32,38,44)(27,33,39,45)(28,34,40,46)(29,35,41,47)(30,36,42,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)>;

G:=Group( (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,19,13,7)(2,20,14,8)(3,21,15,9)(4,22,16,10)(5,23,17,11)(6,24,18,12)(25,31,37,43)(26,32,38,44)(27,33,39,45)(28,34,40,46)(29,35,41,47)(30,36,42,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34) );

G=PermutationGroup([[(1,9,17),(2,10,18),(3,11,19),(4,12,20),(5,13,21),(6,14,22),(7,15,23),(8,16,24),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(1,19,13,7),(2,20,14,8),(3,21,15,9),(4,22,16,10),(5,23,17,11),(6,24,18,12),(25,31,37,43),(26,32,38,44),(27,33,39,45),(28,34,40,46),(29,35,41,47),(30,36,42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,48),(11,47),(12,46),(13,45),(14,44),(15,43),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,36),(23,35),(24,34)]])

90 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D4E6A6B6C···6M6N6O6P6Q8A8B8C8D12A12B12C12D12E···12R12S12T12U12V24A···24AF
order122223333344444666···6666688881212121212···121212121224···24
size1121212112221121212112···212121212222211112···2121212122···2

90 irreducible representations

dim111111111111222222222222222222
type+++++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D4D6D6C3xS3D12C3xD4D12C3xD4C4oD8S3xC6S3xC6C3xD12C3xD12C4oD24C3xC4oD8C3xC4oD24
kernelC3xC4oD24C3xC24:C2C3xD24C3xDic12C6xC24C3xC4oD12C4oD24C24:C2D24Dic12C2xC24C4oD12C2xC24C3xC12C62C24C2xC12C2xC8C12C12C2xC6C2xC6C32C8C2xC4C4C22C3C3C1
# reps1211122422241112122222442448816

Matrix representation of C3xC4oD24 in GL2(F73) generated by

640
064
,
460
046
,
430
017
,
017
430
G:=sub<GL(2,GF(73))| [64,0,0,64],[46,0,0,46],[43,0,0,17],[0,43,17,0] >;

C3xC4oD24 in GAP, Magma, Sage, TeX

C_3\times C_4\circ D_{24}
% in TeX

G:=Group("C3xC4oD24");
// GroupNames label

G:=SmallGroup(288,675);
// by ID

G=gap.SmallGroup(288,675);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,344,590,142,2524,102,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=d^2=1,c^12=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^11>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<