extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3xC2xC6) = C3xS3xD8 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.1(S3xC2xC6) | 288,681 |
C4.2(S3xC2xC6) = C3xD8:S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.2(S3xC2xC6) | 288,682 |
C4.3(S3xC2xC6) = C3xD8:3S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.3(S3xC2xC6) | 288,683 |
C4.4(S3xC2xC6) = C3xS3xSD16 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.4(S3xC2xC6) | 288,684 |
C4.5(S3xC2xC6) = C3xQ8:3D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.5(S3xC2xC6) | 288,685 |
C4.6(S3xC2xC6) = C3xD4.D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.6(S3xC2xC6) | 288,686 |
C4.7(S3xC2xC6) = C3xQ8.7D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.7(S3xC2xC6) | 288,687 |
C4.8(S3xC2xC6) = C3xS3xQ16 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 96 | 4 | C4.8(S3xC2xC6) | 288,688 |
C4.9(S3xC2xC6) = C3xQ16:S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 96 | 4 | C4.9(S3xC2xC6) | 288,689 |
C4.10(S3xC2xC6) = C3xD24:C2 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 96 | 4 | C4.10(S3xC2xC6) | 288,690 |
C4.11(S3xC2xC6) = C6xD4:S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | | C4.11(S3xC2xC6) | 288,702 |
C4.12(S3xC2xC6) = C3xD12:6C22 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 24 | 4 | C4.12(S3xC2xC6) | 288,703 |
C4.13(S3xC2xC6) = C6xD4.S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | | C4.13(S3xC2xC6) | 288,704 |
C4.14(S3xC2xC6) = C6xQ8:2S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 96 | | C4.14(S3xC2xC6) | 288,712 |
C4.15(S3xC2xC6) = C3xQ8.11D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.15(S3xC2xC6) | 288,713 |
C4.16(S3xC2xC6) = C6xC3:Q16 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 96 | | C4.16(S3xC2xC6) | 288,714 |
C4.17(S3xC2xC6) = C3xD4:D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.17(S3xC2xC6) | 288,720 |
C4.18(S3xC2xC6) = C3xQ8.13D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.18(S3xC2xC6) | 288,721 |
C4.19(S3xC2xC6) = C3xQ8.14D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.19(S3xC2xC6) | 288,722 |
C4.20(S3xC2xC6) = C6xD4:2S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | | C4.20(S3xC2xC6) | 288,993 |
C4.21(S3xC2xC6) = C3xD4:6D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 24 | 4 | C4.21(S3xC2xC6) | 288,994 |
C4.22(S3xC2xC6) = S3xC6xQ8 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 96 | | C4.22(S3xC2xC6) | 288,995 |
C4.23(S3xC2xC6) = C6xQ8:3S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 96 | | C4.23(S3xC2xC6) | 288,996 |
C4.24(S3xC2xC6) = C3xQ8.15D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.24(S3xC2xC6) | 288,997 |
C4.25(S3xC2xC6) = C3xS3xC4oD4 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.25(S3xC2xC6) | 288,998 |
C4.26(S3xC2xC6) = C6xC24:C2 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 96 | | C4.26(S3xC2xC6) | 288,673 |
C4.27(S3xC2xC6) = C6xD24 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 96 | | C4.27(S3xC2xC6) | 288,674 |
C4.28(S3xC2xC6) = C3xC4oD24 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 48 | 2 | C4.28(S3xC2xC6) | 288,675 |
C4.29(S3xC2xC6) = C6xDic12 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 96 | | C4.29(S3xC2xC6) | 288,676 |
C4.30(S3xC2xC6) = C3xC8:D6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.30(S3xC2xC6) | 288,679 |
C4.31(S3xC2xC6) = C3xC8.D6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.31(S3xC2xC6) | 288,680 |
C4.32(S3xC2xC6) = C2xC6xDic6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 96 | | C4.32(S3xC2xC6) | 288,988 |
C4.33(S3xC2xC6) = C3xD4oD12 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.33(S3xC2xC6) | 288,999 |
C4.34(S3xC2xC6) = C3xQ8oD12 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.34(S3xC2xC6) | 288,1000 |
C4.35(S3xC2xC6) = S3xC2xC24 | central extension (φ=1) | 96 | | C4.35(S3xC2xC6) | 288,670 |
C4.36(S3xC2xC6) = C6xC8:S3 | central extension (φ=1) | 96 | | C4.36(S3xC2xC6) | 288,671 |
C4.37(S3xC2xC6) = C3xC8oD12 | central extension (φ=1) | 48 | 2 | C4.37(S3xC2xC6) | 288,672 |
C4.38(S3xC2xC6) = C3xS3xM4(2) | central extension (φ=1) | 48 | 4 | C4.38(S3xC2xC6) | 288,677 |
C4.39(S3xC2xC6) = C3xD12.C4 | central extension (φ=1) | 48 | 4 | C4.39(S3xC2xC6) | 288,678 |
C4.40(S3xC2xC6) = C2xC6xC3:C8 | central extension (φ=1) | 96 | | C4.40(S3xC2xC6) | 288,691 |
C4.41(S3xC2xC6) = C6xC4.Dic3 | central extension (φ=1) | 48 | | C4.41(S3xC2xC6) | 288,692 |
C4.42(S3xC2xC6) = C3xD4.Dic3 | central extension (φ=1) | 48 | 4 | C4.42(S3xC2xC6) | 288,719 |
C4.43(S3xC2xC6) = C6xC4oD12 | central extension (φ=1) | 48 | | C4.43(S3xC2xC6) | 288,991 |