Copied to
clipboard

G = C3xD12.C4order 288 = 25·32

Direct product of C3 and D12.C4

direct product, metabelian, supersoluble, monomial

Aliases: C3xD12.C4, D12.C12, C24.66D6, Dic6.C12, (S3xC8):8C6, C3:D4.C12, C8:S3:6C6, C8.12(S3xC6), C4.5(S3xC12), (S3xC24):17C2, C12.53(C4xS3), C24.15(C2xC6), C4oD12.3C6, (C3xD12).3C4, D6.2(C2xC12), C12.13(C2xC12), (C2xC12).322D6, C32:11(C8oD4), M4(2):5(C3xS3), (C3xM4(2)):6C6, C62.60(C2xC4), C22.1(S3xC12), (C3xDic6).3C4, (C3xM4(2)):11S3, C12.39(C22xC6), (C3xC24).48C22, C6.16(C22xC12), Dic3.4(C2xC12), (S3xC12).60C22, (C3xC12).171C23, (C6xC12).114C22, C12.227(C22xS3), (C32xM4(2)):8C2, (C2xC3:C8):3C6, (C6xC3:C8):24C2, C3:2(C3xC8oD4), C4.39(S3xC2xC6), C3:C8.12(C2xC6), C2.17(S3xC2xC12), C6.115(S3xC2xC4), (C2xC6).6(C2xC12), (C2xC6).24(C4xS3), (C2xC4).46(S3xC6), (C3xC3:D4).3C4, (C3xC8:S3):14C2, (C4xS3).17(C2xC6), (S3xC6).14(C2xC4), (C3xC12).68(C2xC4), (C2xC12).25(C2xC6), (C3xC4oD12).9C2, (C3xC3:C8).43C22, (C3xC6).87(C22xC4), (C3xDic3).20(C2xC4), SmallGroup(288,678)

Series: Derived Chief Lower central Upper central

C1C6 — C3xD12.C4
C1C3C6C12C3xC12S3xC12C3xC4oD12 — C3xD12.C4
C3C6 — C3xD12.C4
C1C12C3xM4(2)

Generators and relations for C3xD12.C4
 G = < a,b,c,d | a3=b12=c2=1, d4=b6, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b7, dcd-1=b6c >

Subgroups: 250 in 134 conjugacy classes, 74 normal (42 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC8, M4(2), M4(2), C4oD4, C3xS3, C3xC6, C3xC6, C3:C8, C24, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C8oD4, C3xDic3, C3xC12, S3xC6, C62, S3xC8, C8:S3, C2xC3:C8, C2xC24, C3xM4(2), C3xM4(2), C4oD12, C3xC4oD4, C3xC3:C8, C3xC24, C3xDic6, S3xC12, C3xD12, C3xC3:D4, C6xC12, D12.C4, C3xC8oD4, S3xC24, C3xC8:S3, C6xC3:C8, C32xM4(2), C3xC4oD12, C3xD12.C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, C23, C12, D6, C2xC6, C22xC4, C3xS3, C4xS3, C2xC12, C22xS3, C22xC6, C8oD4, S3xC6, S3xC2xC4, C22xC12, S3xC12, S3xC2xC6, D12.C4, C3xC8oD4, S3xC2xC12, C3xD12.C4

Smallest permutation representation of C3xD12.C4
On 48 points
Generators in S48
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)
(1 13 10 16 7 19 4 22)(2 20 11 23 8 14 5 17)(3 15 12 18 9 21 6 24)(25 37 28 46 31 43 34 40)(26 44 29 41 32 38 35 47)(27 39 30 48 33 45 36 42)

G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (1,13,10,16,7,19,4,22)(2,20,11,23,8,14,5,17)(3,15,12,18,9,21,6,24)(25,37,28,46,31,43,34,40)(26,44,29,41,32,38,35,47)(27,39,30,48,33,45,36,42)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (1,13,10,16,7,19,4,22)(2,20,11,23,8,14,5,17)(3,15,12,18,9,21,6,24)(25,37,28,46,31,43,34,40)(26,44,29,41,32,38,35,47)(27,39,30,48,33,45,36,42) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37)], [(1,13,10,16,7,19,4,22),(2,20,11,23,8,14,5,17),(3,15,12,18,9,21,6,24),(25,37,28,46,31,43,34,40),(26,44,29,41,32,38,35,47),(27,39,30,48,33,45,36,42)]])

90 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D4E6A6B6C···6G6H6I6J6K6L6M6N8A8B8C8D8E8F8G8H8I8J12A12B12C12D12E···12L12M12N12O12P12Q12R12S24A···24H24I···24P24Q···24AB24AC24AD24AE24AF
order122223333344444666···6666666688888888881212121212···121212121212121224···2424···2424···2424242424
size112661122211266112···24446666222233336611112···244466662···23···34···46666

90 irreducible representations

dim11111111111111111122222222222244
type+++++++++
imageC1C2C2C2C2C2C3C4C4C4C6C6C6C6C6C12C12C12S3D6D6C3xS3C4xS3C4xS3C8oD4S3xC6S3xC6S3xC12S3xC12C3xC8oD4D12.C4C3xD12.C4
kernelC3xD12.C4S3xC24C3xC8:S3C6xC3:C8C32xM4(2)C3xC4oD12D12.C4C3xDic6C3xD12C3xC3:D4S3xC8C8:S3C2xC3:C8C3xM4(2)C4oD12Dic6D12C3:D4C3xM4(2)C24C2xC12M4(2)C12C2xC6C32C8C2xC4C4C22C3C3C1
# reps12211122244422244812122244244824

Matrix representation of C3xD12.C4 in GL4(F73) generated by

64000
06400
0010
0001
,
65000
0900
00460
00027
,
0900
65000
00051
00630
,
46000
04600
0001
00460
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,1,0,0,0,0,1],[65,0,0,0,0,9,0,0,0,0,46,0,0,0,0,27],[0,65,0,0,9,0,0,0,0,0,0,63,0,0,51,0],[46,0,0,0,0,46,0,0,0,0,0,46,0,0,1,0] >;

C3xD12.C4 in GAP, Magma, Sage, TeX

C_3\times D_{12}.C_4
% in TeX

G:=Group("C3xD12.C4");
// GroupNames label

G:=SmallGroup(288,678);
// by ID

G=gap.SmallGroup(288,678);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,701,555,142,102,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^2=1,d^4=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^7,d*c*d^-1=b^6*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<