Copied to
clipboard

G = D72:C2order 288 = 25·32

6th semidirect product of D72 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8:3D18, D72:6C2, Q8:3D18, C72:3C22, SD16:1D9, D18.7D4, D4.3D18, C24.29D6, D36:2C22, C36.5C23, Dic9.9D4, D4:D9:3C2, (D4xD9):3C2, C9:C8:2C22, C8:D9:1C2, C9:3(C8:C22), C3.(Q8:3D6), (C3xD4).5D6, C6.93(S3xD4), C2.19(D4xD9), Q8:2D9:2C2, Q8:3D9:1C2, (C9xSD16):1C2, C18.31(C2xD4), (C3xQ8).25D6, (Q8xC9):2C22, C4.5(C22xD9), (C3xSD16).1S3, (C4xD9).2C22, (D4xC9).3C22, C12.44(C22xS3), SmallGroup(288,124)

Series: Derived Chief Lower central Upper central

C1C36 — D72:C2
C1C3C9C18C36C4xD9D4xD9 — D72:C2
C9C18C36 — D72:C2
C1C2C4SD16

Generators and relations for D72:C2
 G = < a,b,c | a72=b2=c2=1, bab=a-1, cac=a19, bc=cb >

Subgroups: 604 in 102 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, D4, D4, Q8, C23, C9, Dic3, C12, C12, D6, C2xC6, M4(2), D8, SD16, SD16, C2xD4, C4oD4, D9, C18, C18, C3:C8, C24, C4xS3, D12, C3:D4, C3xD4, C3xQ8, C22xS3, C8:C22, Dic9, C36, C36, D18, D18, C2xC18, C8:S3, D24, D4:S3, Q8:2S3, C3xSD16, S3xD4, Q8:3S3, C9:C8, C72, C4xD9, C4xD9, D36, D36, C9:D4, D4xC9, Q8xC9, C22xD9, Q8:3D6, C8:D9, D72, D4:D9, Q8:2D9, C9xSD16, D4xD9, Q8:3D9, D72:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D9, C22xS3, C8:C22, D18, S3xD4, C22xD9, Q8:3D6, D4xD9, D72:C2

Smallest permutation representation of D72:C2
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 72)(11 71)(12 70)(13 69)(14 68)(15 67)(16 66)(17 65)(18 64)(19 63)(20 62)(21 61)(22 60)(23 59)(24 58)(25 57)(26 56)(27 55)(28 54)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)
(2 20)(3 39)(4 58)(6 24)(7 43)(8 62)(10 28)(11 47)(12 66)(14 32)(15 51)(16 70)(18 36)(19 55)(22 40)(23 59)(26 44)(27 63)(30 48)(31 67)(34 52)(35 71)(38 56)(42 60)(46 64)(50 68)(54 72)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,72)(11,71)(12,70)(13,69)(14,68)(15,67)(16,66)(17,65)(18,64)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,20)(3,39)(4,58)(6,24)(7,43)(8,62)(10,28)(11,47)(12,66)(14,32)(15,51)(16,70)(18,36)(19,55)(22,40)(23,59)(26,44)(27,63)(30,48)(31,67)(34,52)(35,71)(38,56)(42,60)(46,64)(50,68)(54,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,72)(11,71)(12,70)(13,69)(14,68)(15,67)(16,66)(17,65)(18,64)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,20)(3,39)(4,58)(6,24)(7,43)(8,62)(10,28)(11,47)(12,66)(14,32)(15,51)(16,70)(18,36)(19,55)(22,40)(23,59)(26,44)(27,63)(30,48)(31,67)(34,52)(35,71)(38,56)(42,60)(46,64)(50,68)(54,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,72),(11,71),(12,70),(13,69),(14,68),(15,67),(16,66),(17,65),(18,64),(19,63),(20,62),(21,61),(22,60),(23,59),(24,58),(25,57),(26,56),(27,55),(28,54),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42)], [(2,20),(3,39),(4,58),(6,24),(7,43),(8,62),(10,28),(11,47),(12,66),(14,32),(15,51),(16,70),(18,36),(19,55),(22,40),(23,59),(26,44),(27,63),(30,48),(31,67),(34,52),(35,71),(38,56),(42,60),(46,64),(50,68),(54,72)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C6A6B8A8B9A9B9C12A12B18A18B18C18D18E18F24A24B36A36B36C36D36E36F72A···72F
order122222344466889991212181818181818242436363636363672···72
size114183636224182843622248222888444448884···4

39 irreducible representations

dim11111111222222222244444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6D9D18D18D18C8:C22S3xD4Q8:3D6D4xD9D72:C2
kernelD72:C2C8:D9D72D4:D9Q8:2D9C9xSD16D4xD9Q8:3D9C3xSD16Dic9D18C24C3xD4C3xQ8SD16C8D4Q8C9C6C3C2C1
# reps11111111111111333311236

Matrix representation of D72:C2 in GL8(F73)

004530000
0070420000
2870000000
331000000
000028287071
0000444430
0000633905
00001001
,
2870000000
4245000000
004530000
0031280000
00001000
000007200
00004954125
0000720072
,
10000000
01000000
007200000
000720000
00001000
000007200
000019247248
00000101

G:=sub<GL(8,GF(73))| [0,0,28,3,0,0,0,0,0,0,70,31,0,0,0,0,45,70,0,0,0,0,0,0,3,42,0,0,0,0,0,0,0,0,0,0,28,44,63,1,0,0,0,0,28,44,39,0,0,0,0,0,70,3,0,0,0,0,0,0,71,0,5,1],[28,42,0,0,0,0,0,0,70,45,0,0,0,0,0,0,0,0,45,31,0,0,0,0,0,0,3,28,0,0,0,0,0,0,0,0,1,0,49,72,0,0,0,0,0,72,54,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,25,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,19,0,0,0,0,0,0,72,24,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,48,1] >;

D72:C2 in GAP, Magma, Sage, TeX

D_{72}\rtimes C_2
% in TeX

G:=Group("D72:C2");
// GroupNames label

G:=SmallGroup(288,124);
// by ID

G=gap.SmallGroup(288,124);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,422,135,100,346,185,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^72=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^19,b*c=c*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<