extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC6).1(C2xC12) = C8xC32:C6 | φ: C2xC12/C4 → C6 ⊆ Aut C3xC6 | 72 | 6 | (C3xC6).1(C2xC12) | 432,115 |
(C3xC6).2(C2xC12) = He3:5M4(2) | φ: C2xC12/C4 → C6 ⊆ Aut C3xC6 | 72 | 6 | (C3xC6).2(C2xC12) | 432,116 |
(C3xC6).3(C2xC12) = C62.19D6 | φ: C2xC12/C4 → C6 ⊆ Aut C3xC6 | 144 | | (C3xC6).3(C2xC12) | 432,139 |
(C3xC6).4(C2xC12) = C62.21D6 | φ: C2xC12/C4 → C6 ⊆ Aut C3xC6 | 72 | | (C3xC6).4(C2xC12) | 432,141 |
(C3xC6).5(C2xC12) = C2xHe3:3C8 | φ: C2xC12/C22 → C6 ⊆ Aut C3xC6 | 144 | | (C3xC6).5(C2xC12) | 432,136 |
(C3xC6).6(C2xC12) = He3:7M4(2) | φ: C2xC12/C22 → C6 ⊆ Aut C3xC6 | 72 | 6 | (C3xC6).6(C2xC12) | 432,137 |
(C3xC6).7(C2xC12) = C4xC32:C12 | φ: C2xC12/C22 → C6 ⊆ Aut C3xC6 | 144 | | (C3xC6).7(C2xC12) | 432,138 |
(C3xC6).8(C2xC12) = C62.20D6 | φ: C2xC12/C22 → C6 ⊆ Aut C3xC6 | 144 | | (C3xC6).8(C2xC12) | 432,140 |
(C3xC6).9(C2xC12) = C62:3C12 | φ: C2xC12/C22 → C6 ⊆ Aut C3xC6 | 72 | | (C3xC6).9(C2xC12) | 432,166 |
(C3xC6).10(C2xC12) = C3xC3:S3:3C8 | φ: C2xC12/C6 → C4 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).10(C2xC12) | 432,628 |
(C3xC6).11(C2xC12) = C3xC32:M4(2) | φ: C2xC12/C6 → C4 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).11(C2xC12) | 432,629 |
(C3xC6).12(C2xC12) = C12xC32:C4 | φ: C2xC12/C6 → C4 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).12(C2xC12) | 432,630 |
(C3xC6).13(C2xC12) = C3xC4:(C32:C4) | φ: C2xC12/C6 → C4 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).13(C2xC12) | 432,631 |
(C3xC6).14(C2xC12) = C6xC32:2C8 | φ: C2xC12/C6 → C4 ⊆ Aut C3xC6 | 48 | | (C3xC6).14(C2xC12) | 432,632 |
(C3xC6).15(C2xC12) = C3xC62.C4 | φ: C2xC12/C6 → C4 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).15(C2xC12) | 432,633 |
(C3xC6).16(C2xC12) = C3xC62:C4 | φ: C2xC12/C6 → C4 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).16(C2xC12) | 432,634 |
(C3xC6).17(C2xC12) = C3xS3xC3:C8 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).17(C2xC12) | 432,414 |
(C3xC6).18(C2xC12) = C3xC12.29D6 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).18(C2xC12) | 432,415 |
(C3xC6).19(C2xC12) = C3xD6.Dic3 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).19(C2xC12) | 432,416 |
(C3xC6).20(C2xC12) = C3xC12.31D6 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).20(C2xC12) | 432,417 |
(C3xC6).21(C2xC12) = C3xDic32 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).21(C2xC12) | 432,425 |
(C3xC6).22(C2xC12) = C3xD6:Dic3 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).22(C2xC12) | 432,426 |
(C3xC6).23(C2xC12) = C3xC6.D12 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).23(C2xC12) | 432,427 |
(C3xC6).24(C2xC12) = C3xDic3:Dic3 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).24(C2xC12) | 432,428 |
(C3xC6).25(C2xC12) = C3xC62.C22 | φ: C2xC12/C6 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).25(C2xC12) | 432,429 |
(C3xC6).26(C2xC12) = C42xHe3 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).26(C2xC12) | 432,201 |
(C3xC6).27(C2xC12) = C42x3- 1+2 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).27(C2xC12) | 432,202 |
(C3xC6).28(C2xC12) = C22:C4xHe3 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 72 | | (C3xC6).28(C2xC12) | 432,204 |
(C3xC6).29(C2xC12) = C22:C4x3- 1+2 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 72 | | (C3xC6).29(C2xC12) | 432,205 |
(C3xC6).30(C2xC12) = C4:C4xHe3 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).30(C2xC12) | 432,207 |
(C3xC6).31(C2xC12) = C4:C4x3- 1+2 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).31(C2xC12) | 432,208 |
(C3xC6).32(C2xC12) = C2xC8xHe3 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).32(C2xC12) | 432,210 |
(C3xC6).33(C2xC12) = C2xC8x3- 1+2 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).33(C2xC12) | 432,211 |
(C3xC6).34(C2xC12) = M4(2)xHe3 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 72 | 6 | (C3xC6).34(C2xC12) | 432,213 |
(C3xC6).35(C2xC12) = M4(2)x3- 1+2 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 72 | 6 | (C3xC6).35(C2xC12) | 432,214 |
(C3xC6).36(C2xC12) = C22xC4x3- 1+2 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).36(C2xC12) | 432,402 |
(C3xC6).37(C2xC12) = S3xC72 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | 2 | (C3xC6).37(C2xC12) | 432,109 |
(C3xC6).38(C2xC12) = C9xC8:S3 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | 2 | (C3xC6).38(C2xC12) | 432,110 |
(C3xC6).39(C2xC12) = Dic3xC36 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).39(C2xC12) | 432,131 |
(C3xC6).40(C2xC12) = C9xDic3:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).40(C2xC12) | 432,132 |
(C3xC6).41(C2xC12) = C9xD6:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).41(C2xC12) | 432,135 |
(C3xC6).42(C2xC12) = S3xC2xC36 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).42(C2xC12) | 432,345 |
(C3xC6).43(C2xC12) = S3xC3xC24 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).43(C2xC12) | 432,464 |
(C3xC6).44(C2xC12) = C32xC8:S3 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).44(C2xC12) | 432,465 |
(C3xC6).45(C2xC12) = C32xDic3:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).45(C2xC12) | 432,472 |
(C3xC6).46(C2xC12) = C32xD6:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).46(C2xC12) | 432,474 |
(C3xC6).47(C2xC12) = C3:S3xC24 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).47(C2xC12) | 432,480 |
(C3xC6).48(C2xC12) = C3xC24:S3 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).48(C2xC12) | 432,481 |
(C3xC6).49(C2xC12) = C3xC6.Dic6 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).49(C2xC12) | 432,488 |
(C3xC6).50(C2xC12) = C3xC6.11D12 | φ: C2xC12/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).50(C2xC12) | 432,490 |
(C3xC6).51(C2xC12) = C18xC3:C8 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).51(C2xC12) | 432,126 |
(C3xC6).52(C2xC12) = C9xC4.Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 72 | 2 | (C3xC6).52(C2xC12) | 432,127 |
(C3xC6).53(C2xC12) = C9xC4:Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).53(C2xC12) | 432,133 |
(C3xC6).54(C2xC12) = C9xC6.D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).54(C2xC12) | 432,165 |
(C3xC6).55(C2xC12) = Dic3xC2xC18 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).55(C2xC12) | 432,373 |
(C3xC6).56(C2xC12) = C3xC6xC3:C8 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).56(C2xC12) | 432,469 |
(C3xC6).57(C2xC12) = C32xC4.Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).57(C2xC12) | 432,470 |
(C3xC6).58(C2xC12) = Dic3xC3xC12 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).58(C2xC12) | 432,471 |
(C3xC6).59(C2xC12) = C32xC4:Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).59(C2xC12) | 432,473 |
(C3xC6).60(C2xC12) = C32xC6.D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).60(C2xC12) | 432,479 |
(C3xC6).61(C2xC12) = C6xC32:4C8 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).61(C2xC12) | 432,485 |
(C3xC6).62(C2xC12) = C3xC12.58D6 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).62(C2xC12) | 432,486 |
(C3xC6).63(C2xC12) = C12xC3:Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).63(C2xC12) | 432,487 |
(C3xC6).64(C2xC12) = C3xC12:Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).64(C2xC12) | 432,489 |
(C3xC6).65(C2xC12) = C3xC62:5C4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).65(C2xC12) | 432,495 |
(C3xC6).66(C2xC12) = C22:C4xC3xC9 | central extension (φ=1) | 216 | | (C3xC6).66(C2xC12) | 432,203 |
(C3xC6).67(C2xC12) = C4:C4xC3xC9 | central extension (φ=1) | 432 | | (C3xC6).67(C2xC12) | 432,206 |
(C3xC6).68(C2xC12) = M4(2)xC3xC9 | central extension (φ=1) | 216 | | (C3xC6).68(C2xC12) | 432,212 |
(C3xC6).69(C2xC12) = C22:C4xC33 | central extension (φ=1) | 216 | | (C3xC6).69(C2xC12) | 432,513 |
(C3xC6).70(C2xC12) = C4:C4xC33 | central extension (φ=1) | 432 | | (C3xC6).70(C2xC12) | 432,514 |
(C3xC6).71(C2xC12) = M4(2)xC33 | central extension (φ=1) | 216 | | (C3xC6).71(C2xC12) | 432,516 |