Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C2xC12

Direct product G=NxQ with N=C3xC6 and Q=C2xC12
dρLabelID
C62xC12432C6^2xC12432,730

Semidirect products G=N:Q with N=C3xC6 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
(C3xC6):1(C2xC12) = C2xC4xC32:C6φ: C2xC12/C4C6 ⊆ Aut C3xC672(C3xC6):1(C2xC12)432,349
(C3xC6):2(C2xC12) = C22xC32:C12φ: C2xC12/C22C6 ⊆ Aut C3xC6144(C3xC6):2(C2xC12)432,376
(C3xC6):3(C2xC12) = C2xC6xC32:C4φ: C2xC12/C6C4 ⊆ Aut C3xC648(C3xC6):3(C2xC12)432,765
(C3xC6):4(C2xC12) = S3xC6xDic3φ: C2xC12/C6C22 ⊆ Aut C3xC648(C3xC6):4(C2xC12)432,651
(C3xC6):5(C2xC12) = C6xC6.D6φ: C2xC12/C6C22 ⊆ Aut C3xC648(C3xC6):5(C2xC12)432,654
(C3xC6):6(C2xC12) = C22xC4xHe3φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6):6(C2xC12)432,401
(C3xC6):7(C2xC12) = S3xC6xC12φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6):7(C2xC12)432,701
(C3xC6):8(C2xC12) = C3:S3xC2xC12φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6):8(C2xC12)432,711
(C3xC6):9(C2xC12) = Dic3xC62φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6):9(C2xC12)432,708
(C3xC6):10(C2xC12) = C2xC6xC3:Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6):10(C2xC12)432,718

Non-split extensions G=N.Q with N=C3xC6 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
(C3xC6).1(C2xC12) = C8xC32:C6φ: C2xC12/C4C6 ⊆ Aut C3xC6726(C3xC6).1(C2xC12)432,115
(C3xC6).2(C2xC12) = He3:5M4(2)φ: C2xC12/C4C6 ⊆ Aut C3xC6726(C3xC6).2(C2xC12)432,116
(C3xC6).3(C2xC12) = C62.19D6φ: C2xC12/C4C6 ⊆ Aut C3xC6144(C3xC6).3(C2xC12)432,139
(C3xC6).4(C2xC12) = C62.21D6φ: C2xC12/C4C6 ⊆ Aut C3xC672(C3xC6).4(C2xC12)432,141
(C3xC6).5(C2xC12) = C2xHe3:3C8φ: C2xC12/C22C6 ⊆ Aut C3xC6144(C3xC6).5(C2xC12)432,136
(C3xC6).6(C2xC12) = He3:7M4(2)φ: C2xC12/C22C6 ⊆ Aut C3xC6726(C3xC6).6(C2xC12)432,137
(C3xC6).7(C2xC12) = C4xC32:C12φ: C2xC12/C22C6 ⊆ Aut C3xC6144(C3xC6).7(C2xC12)432,138
(C3xC6).8(C2xC12) = C62.20D6φ: C2xC12/C22C6 ⊆ Aut C3xC6144(C3xC6).8(C2xC12)432,140
(C3xC6).9(C2xC12) = C62:3C12φ: C2xC12/C22C6 ⊆ Aut C3xC672(C3xC6).9(C2xC12)432,166
(C3xC6).10(C2xC12) = C3xC3:S3:3C8φ: C2xC12/C6C4 ⊆ Aut C3xC6484(C3xC6).10(C2xC12)432,628
(C3xC6).11(C2xC12) = C3xC32:M4(2)φ: C2xC12/C6C4 ⊆ Aut C3xC6484(C3xC6).11(C2xC12)432,629
(C3xC6).12(C2xC12) = C12xC32:C4φ: C2xC12/C6C4 ⊆ Aut C3xC6484(C3xC6).12(C2xC12)432,630
(C3xC6).13(C2xC12) = C3xC4:(C32:C4)φ: C2xC12/C6C4 ⊆ Aut C3xC6484(C3xC6).13(C2xC12)432,631
(C3xC6).14(C2xC12) = C6xC32:2C8φ: C2xC12/C6C4 ⊆ Aut C3xC648(C3xC6).14(C2xC12)432,632
(C3xC6).15(C2xC12) = C3xC62.C4φ: C2xC12/C6C4 ⊆ Aut C3xC6244(C3xC6).15(C2xC12)432,633
(C3xC6).16(C2xC12) = C3xC62:C4φ: C2xC12/C6C4 ⊆ Aut C3xC6244(C3xC6).16(C2xC12)432,634
(C3xC6).17(C2xC12) = C3xS3xC3:C8φ: C2xC12/C6C22 ⊆ Aut C3xC6484(C3xC6).17(C2xC12)432,414
(C3xC6).18(C2xC12) = C3xC12.29D6φ: C2xC12/C6C22 ⊆ Aut C3xC6484(C3xC6).18(C2xC12)432,415
(C3xC6).19(C2xC12) = C3xD6.Dic3φ: C2xC12/C6C22 ⊆ Aut C3xC6484(C3xC6).19(C2xC12)432,416
(C3xC6).20(C2xC12) = C3xC12.31D6φ: C2xC12/C6C22 ⊆ Aut C3xC6484(C3xC6).20(C2xC12)432,417
(C3xC6).21(C2xC12) = C3xDic32φ: C2xC12/C6C22 ⊆ Aut C3xC648(C3xC6).21(C2xC12)432,425
(C3xC6).22(C2xC12) = C3xD6:Dic3φ: C2xC12/C6C22 ⊆ Aut C3xC648(C3xC6).22(C2xC12)432,426
(C3xC6).23(C2xC12) = C3xC6.D12φ: C2xC12/C6C22 ⊆ Aut C3xC648(C3xC6).23(C2xC12)432,427
(C3xC6).24(C2xC12) = C3xDic3:Dic3φ: C2xC12/C6C22 ⊆ Aut C3xC648(C3xC6).24(C2xC12)432,428
(C3xC6).25(C2xC12) = C3xC62.C22φ: C2xC12/C6C22 ⊆ Aut C3xC648(C3xC6).25(C2xC12)432,429
(C3xC6).26(C2xC12) = C42xHe3φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6).26(C2xC12)432,201
(C3xC6).27(C2xC12) = C42x3- 1+2φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6).27(C2xC12)432,202
(C3xC6).28(C2xC12) = C22:C4xHe3φ: C2xC12/C2xC4C3 ⊆ Aut C3xC672(C3xC6).28(C2xC12)432,204
(C3xC6).29(C2xC12) = C22:C4x3- 1+2φ: C2xC12/C2xC4C3 ⊆ Aut C3xC672(C3xC6).29(C2xC12)432,205
(C3xC6).30(C2xC12) = C4:C4xHe3φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6).30(C2xC12)432,207
(C3xC6).31(C2xC12) = C4:C4x3- 1+2φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6).31(C2xC12)432,208
(C3xC6).32(C2xC12) = C2xC8xHe3φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6).32(C2xC12)432,210
(C3xC6).33(C2xC12) = C2xC8x3- 1+2φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6).33(C2xC12)432,211
(C3xC6).34(C2xC12) = M4(2)xHe3φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6726(C3xC6).34(C2xC12)432,213
(C3xC6).35(C2xC12) = M4(2)x3- 1+2φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6726(C3xC6).35(C2xC12)432,214
(C3xC6).36(C2xC12) = C22xC4x3- 1+2φ: C2xC12/C2xC4C3 ⊆ Aut C3xC6144(C3xC6).36(C2xC12)432,402
(C3xC6).37(C2xC12) = S3xC72φ: C2xC12/C12C2 ⊆ Aut C3xC61442(C3xC6).37(C2xC12)432,109
(C3xC6).38(C2xC12) = C9xC8:S3φ: C2xC12/C12C2 ⊆ Aut C3xC61442(C3xC6).38(C2xC12)432,110
(C3xC6).39(C2xC12) = Dic3xC36φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).39(C2xC12)432,131
(C3xC6).40(C2xC12) = C9xDic3:C4φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).40(C2xC12)432,132
(C3xC6).41(C2xC12) = C9xD6:C4φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).41(C2xC12)432,135
(C3xC6).42(C2xC12) = S3xC2xC36φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).42(C2xC12)432,345
(C3xC6).43(C2xC12) = S3xC3xC24φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).43(C2xC12)432,464
(C3xC6).44(C2xC12) = C32xC8:S3φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).44(C2xC12)432,465
(C3xC6).45(C2xC12) = C32xDic3:C4φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).45(C2xC12)432,472
(C3xC6).46(C2xC12) = C32xD6:C4φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).46(C2xC12)432,474
(C3xC6).47(C2xC12) = C3:S3xC24φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).47(C2xC12)432,480
(C3xC6).48(C2xC12) = C3xC24:S3φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).48(C2xC12)432,481
(C3xC6).49(C2xC12) = C3xC6.Dic6φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).49(C2xC12)432,488
(C3xC6).50(C2xC12) = C3xC6.11D12φ: C2xC12/C12C2 ⊆ Aut C3xC6144(C3xC6).50(C2xC12)432,490
(C3xC6).51(C2xC12) = C18xC3:C8φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).51(C2xC12)432,126
(C3xC6).52(C2xC12) = C9xC4.Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6722(C3xC6).52(C2xC12)432,127
(C3xC6).53(C2xC12) = C9xC4:Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).53(C2xC12)432,133
(C3xC6).54(C2xC12) = C9xC6.D4φ: C2xC12/C2xC6C2 ⊆ Aut C3xC672(C3xC6).54(C2xC12)432,165
(C3xC6).55(C2xC12) = Dic3xC2xC18φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).55(C2xC12)432,373
(C3xC6).56(C2xC12) = C3xC6xC3:C8φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).56(C2xC12)432,469
(C3xC6).57(C2xC12) = C32xC4.Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3xC672(C3xC6).57(C2xC12)432,470
(C3xC6).58(C2xC12) = Dic3xC3xC12φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).58(C2xC12)432,471
(C3xC6).59(C2xC12) = C32xC4:Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).59(C2xC12)432,473
(C3xC6).60(C2xC12) = C32xC6.D4φ: C2xC12/C2xC6C2 ⊆ Aut C3xC672(C3xC6).60(C2xC12)432,479
(C3xC6).61(C2xC12) = C6xC32:4C8φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).61(C2xC12)432,485
(C3xC6).62(C2xC12) = C3xC12.58D6φ: C2xC12/C2xC6C2 ⊆ Aut C3xC672(C3xC6).62(C2xC12)432,486
(C3xC6).63(C2xC12) = C12xC3:Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).63(C2xC12)432,487
(C3xC6).64(C2xC12) = C3xC12:Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3xC6144(C3xC6).64(C2xC12)432,489
(C3xC6).65(C2xC12) = C3xC62:5C4φ: C2xC12/C2xC6C2 ⊆ Aut C3xC672(C3xC6).65(C2xC12)432,495
(C3xC6).66(C2xC12) = C22:C4xC3xC9central extension (φ=1)216(C3xC6).66(C2xC12)432,203
(C3xC6).67(C2xC12) = C4:C4xC3xC9central extension (φ=1)432(C3xC6).67(C2xC12)432,206
(C3xC6).68(C2xC12) = M4(2)xC3xC9central extension (φ=1)216(C3xC6).68(C2xC12)432,212
(C3xC6).69(C2xC12) = C22:C4xC33central extension (φ=1)216(C3xC6).69(C2xC12)432,513
(C3xC6).70(C2xC12) = C4:C4xC33central extension (φ=1)432(C3xC6).70(C2xC12)432,514
(C3xC6).71(C2xC12) = M4(2)xC33central extension (φ=1)216(C3xC6).71(C2xC12)432,516

׿
x
:
Z
F
o
wr
Q
<