Copied to
clipboard

G = C9xC4.Dic3order 432 = 24·33

Direct product of C9 and C4.Dic3

direct product, metacyclic, supersoluble, monomial

Aliases: C9xC4.Dic3, C12.1C36, C36.79D6, C36.9Dic3, C62.18C12, C3:C8:5C18, C4.(C9xDic3), (C2xC6).6C36, (C3xC36).9C4, C6.6(C2xC36), (C6xC18).2C4, (C3xC9):7M4(2), C4.15(S3xC18), (C6xC36).17C2, (C6xC12).31C6, (C2xC12).5C18, (C2xC36).18S3, C3:2(C9xM4(2)), C12.119(S3xC6), C12.15(C2xC18), (C3xC12).16C12, C22.(C9xDic3), C6.30(C6xDic3), C2.3(Dic3xC18), (C2xC18).2Dic3, (C3xC36).53C22, C12.19(C3xDic3), C18.18(C2xDic3), C32.3(C3xM4(2)), (C9xC3:C8):12C2, (C3xC3:C8).8C6, (C2xC4).2(S3xC9), (C3xC4.Dic3).C3, (C3xC12).90(C2xC6), (C2xC12).40(C3xS3), (C3xC6).52(C2xC12), (C3xC18).28(C2xC4), (C2xC6).9(C3xDic3), C3.4(C3xC4.Dic3), SmallGroup(432,127)

Series: Derived Chief Lower central Upper central

C1C6 — C9xC4.Dic3
C1C3C6C3xC6C3xC12C3xC36C9xC3:C8 — C9xC4.Dic3
C3C6 — C9xC4.Dic3
C1C36C2xC36

Generators and relations for C9xC4.Dic3
 G = < a,b,c,d | a9=b4=1, c6=b2, d2=b2c3, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c5 >

Subgroups: 116 in 76 conjugacy classes, 45 normal (39 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, C2xC4, C9, C9, C32, C12, C12, C2xC6, C2xC6, M4(2), C18, C18, C3xC6, C3xC6, C3:C8, C24, C2xC12, C2xC12, C3xC9, C36, C36, C2xC18, C2xC18, C3xC12, C62, C4.Dic3, C3xM4(2), C3xC18, C3xC18, C72, C2xC36, C2xC36, C3xC3:C8, C6xC12, C3xC36, C6xC18, C9xM4(2), C3xC4.Dic3, C9xC3:C8, C6xC36, C9xC4.Dic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, C9, Dic3, C12, D6, C2xC6, M4(2), C18, C3xS3, C2xDic3, C2xC12, C36, C2xC18, C3xDic3, S3xC6, C4.Dic3, C3xM4(2), S3xC9, C2xC36, C6xDic3, C9xDic3, S3xC18, C9xM4(2), C3xC4.Dic3, Dic3xC18, C9xC4.Dic3

Smallest permutation representation of C9xC4.Dic3
On 72 points
Generators in S72
(1 33 15 9 29 23 5 25 19)(2 34 16 10 30 24 6 26 20)(3 35 17 11 31 13 7 27 21)(4 36 18 12 32 14 8 28 22)(37 72 55 41 64 59 45 68 51)(38 61 56 42 65 60 46 69 52)(39 62 57 43 66 49 47 70 53)(40 63 58 44 67 50 48 71 54)
(1 10 7 4)(2 11 8 5)(3 12 9 6)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 34 31 28)(26 35 32 29)(27 36 33 30)(37 40 43 46)(38 41 44 47)(39 42 45 48)(49 52 55 58)(50 53 56 59)(51 54 57 60)(61 64 67 70)(62 65 68 71)(63 66 69 72)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 39 10 48 7 45 4 42)(2 44 11 41 8 38 5 47)(3 37 12 46 9 43 6 40)(13 59 22 56 19 53 16 50)(14 52 23 49 20 58 17 55)(15 57 24 54 21 51 18 60)(25 70 34 67 31 64 28 61)(26 63 35 72 32 69 29 66)(27 68 36 65 33 62 30 71)

G:=sub<Sym(72)| (1,33,15,9,29,23,5,25,19)(2,34,16,10,30,24,6,26,20)(3,35,17,11,31,13,7,27,21)(4,36,18,12,32,14,8,28,22)(37,72,55,41,64,59,45,68,51)(38,61,56,42,65,60,46,69,52)(39,62,57,43,66,49,47,70,53)(40,63,58,44,67,50,48,71,54), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,64,67,70)(62,65,68,71)(63,66,69,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,39,10,48,7,45,4,42)(2,44,11,41,8,38,5,47)(3,37,12,46,9,43,6,40)(13,59,22,56,19,53,16,50)(14,52,23,49,20,58,17,55)(15,57,24,54,21,51,18,60)(25,70,34,67,31,64,28,61)(26,63,35,72,32,69,29,66)(27,68,36,65,33,62,30,71)>;

G:=Group( (1,33,15,9,29,23,5,25,19)(2,34,16,10,30,24,6,26,20)(3,35,17,11,31,13,7,27,21)(4,36,18,12,32,14,8,28,22)(37,72,55,41,64,59,45,68,51)(38,61,56,42,65,60,46,69,52)(39,62,57,43,66,49,47,70,53)(40,63,58,44,67,50,48,71,54), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,64,67,70)(62,65,68,71)(63,66,69,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,39,10,48,7,45,4,42)(2,44,11,41,8,38,5,47)(3,37,12,46,9,43,6,40)(13,59,22,56,19,53,16,50)(14,52,23,49,20,58,17,55)(15,57,24,54,21,51,18,60)(25,70,34,67,31,64,28,61)(26,63,35,72,32,69,29,66)(27,68,36,65,33,62,30,71) );

G=PermutationGroup([[(1,33,15,9,29,23,5,25,19),(2,34,16,10,30,24,6,26,20),(3,35,17,11,31,13,7,27,21),(4,36,18,12,32,14,8,28,22),(37,72,55,41,64,59,45,68,51),(38,61,56,42,65,60,46,69,52),(39,62,57,43,66,49,47,70,53),(40,63,58,44,67,50,48,71,54)], [(1,10,7,4),(2,11,8,5),(3,12,9,6),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,34,31,28),(26,35,32,29),(27,36,33,30),(37,40,43,46),(38,41,44,47),(39,42,45,48),(49,52,55,58),(50,53,56,59),(51,54,57,60),(61,64,67,70),(62,65,68,71),(63,66,69,72)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,39,10,48,7,45,4,42),(2,44,11,41,8,38,5,47),(3,37,12,46,9,43,6,40),(13,59,22,56,19,53,16,50),(14,52,23,49,20,58,17,55),(15,57,24,54,21,51,18,60),(25,70,34,67,31,64,28,61),(26,63,35,72,32,69,29,66),(27,68,36,65,33,62,30,71)]])

162 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B4C6A6B6C···6M8A8B8C8D9A···9F9G···9L12A12B12C12D12E···12R18A···18F18G···18AD24A···24H36A···36L36M···36AP72A···72X
order12233333444666···688889···99···91212121212···1218···1818···1824···2436···3636···3672···72
size11211222112112···266661···12···211112···21···12···26···61···12···26···6

162 irreducible representations

dim111111111111111222222222222222222
type++++-+-
imageC1C2C2C3C4C4C6C6C9C12C12C18C18C36C36S3Dic3D6Dic3M4(2)C3xS3C3xDic3S3xC6C3xDic3C4.Dic3C3xM4(2)S3xC9C9xDic3S3xC18C9xDic3C9xM4(2)C3xC4.Dic3C9xC4.Dic3
kernelC9xC4.Dic3C9xC3:C8C6xC36C3xC4.Dic3C3xC36C6xC18C3xC3:C8C6xC12C4.Dic3C3xC12C62C3:C8C2xC12C12C2xC6C2xC36C36C36C2xC18C3xC9C2xC12C12C12C2xC6C9C32C2xC4C4C4C22C3C3C1
# reps12122242644126121211112222244666612824

Matrix representation of C9xC4.Dic3 in GL2(F37) generated by

90
09
,
310
06
,
80
023
,
019
120
G:=sub<GL(2,GF(37))| [9,0,0,9],[31,0,0,6],[8,0,0,23],[0,12,19,0] >;

C9xC4.Dic3 in GAP, Magma, Sage, TeX

C_9\times C_4.{\rm Dic}_3
% in TeX

G:=Group("C9xC4.Dic3");
// GroupNames label

G:=SmallGroup(432,127);
// by ID

G=gap.SmallGroup(432,127);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-3,-2,-3,84,1037,142,192,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^4=1,c^6=b^2,d^2=b^2*c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<