Extensions 1→N→G→Q→1 with N=C3xD4 and Q=C3xC6

Direct product G=NxQ with N=C3xD4 and Q=C3xC6
dρLabelID
D4xC32xC6216D4xC3^2xC6432,731

Semidirect products G=N:Q with N=C3xD4 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
(C3xD4):1(C3xC6) = C32xD4:S3φ: C3xC6/C32C2 ⊆ Out C3xD472(C3xD4):1(C3xC6)432,475
(C3xD4):2(C3xC6) = S3xD4xC32φ: C3xC6/C32C2 ⊆ Out C3xD472(C3xD4):2(C3xC6)432,704
(C3xD4):3(C3xC6) = C32xD4:2S3φ: C3xC6/C32C2 ⊆ Out C3xD472(C3xD4):3(C3xC6)432,705
(C3xD4):4(C3xC6) = D8xC33φ: C3xC6/C32C2 ⊆ Out C3xD4216(C3xD4):4(C3xC6)432,517
(C3xD4):5(C3xC6) = C4oD4xC33φ: trivial image216(C3xD4):5(C3xC6)432,733

Non-split extensions G=N.Q with N=C3xD4 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
(C3xD4).1(C3xC6) = C32xD4.S3φ: C3xC6/C32C2 ⊆ Out C3xD472(C3xD4).1(C3xC6)432,476
(C3xD4).2(C3xC6) = D8xC3xC9φ: C3xC6/C32C2 ⊆ Out C3xD4216(C3xD4).2(C3xC6)432,215
(C3xD4).3(C3xC6) = D8xHe3φ: C3xC6/C32C2 ⊆ Out C3xD4726(C3xD4).3(C3xC6)432,216
(C3xD4).4(C3xC6) = D8x3- 1+2φ: C3xC6/C32C2 ⊆ Out C3xD4726(C3xD4).4(C3xC6)432,217
(C3xD4).5(C3xC6) = SD16xC3xC9φ: C3xC6/C32C2 ⊆ Out C3xD4216(C3xD4).5(C3xC6)432,218
(C3xD4).6(C3xC6) = SD16xHe3φ: C3xC6/C32C2 ⊆ Out C3xD4726(C3xD4).6(C3xC6)432,219
(C3xD4).7(C3xC6) = SD16x3- 1+2φ: C3xC6/C32C2 ⊆ Out C3xD4726(C3xD4).7(C3xC6)432,220
(C3xD4).8(C3xC6) = SD16xC33φ: C3xC6/C32C2 ⊆ Out C3xD4216(C3xD4).8(C3xC6)432,518
(C3xD4).9(C3xC6) = D4xC3xC18φ: trivial image216(C3xD4).9(C3xC6)432,403
(C3xD4).10(C3xC6) = C2xD4xHe3φ: trivial image72(C3xD4).10(C3xC6)432,404
(C3xD4).11(C3xC6) = C2xD4x3- 1+2φ: trivial image72(C3xD4).11(C3xC6)432,405
(C3xD4).12(C3xC6) = C4oD4xC3xC9φ: trivial image216(C3xD4).12(C3xC6)432,409
(C3xD4).13(C3xC6) = C4oD4xHe3φ: trivial image726(C3xD4).13(C3xC6)432,410
(C3xD4).14(C3xC6) = C4oD4x3- 1+2φ: trivial image726(C3xD4).14(C3xC6)432,411

׿
x
:
Z
F
o
wr
Q
<