Copied to
clipboard

G = C4oD4xHe3order 432 = 24·33

Direct product of C4oD4 and He3

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C4oD4xHe3, C12.45C62, (C6xC12):7C6, (D4xHe3):8C2, D4:2(C2xHe3), Q8:3(C2xHe3), (Q8xHe3):8C2, (D4xC32):6C6, C62.2(C2xC6), C6.25(C2xC62), (C2xC6).11C62, (Q8xC32):10C6, C2.4(C23xHe3), C4.7(C22xHe3), C22.(C22xHe3), (C2xHe3).42C23, (C4xHe3).56C22, (C22xHe3).15C22, (C2xC4xHe3):11C2, (C2xC4):3(C2xHe3), (C3xC12).71(C2xC6), (C2xC12).23(C3xC6), (C3xD4).13(C3xC6), (C32xC4oD4):2C3, C32:10(C3xC4oD4), (C3xQ8).25(C3xC6), C3.2(C32xC4oD4), (C3xC6).35(C22xC6), (C3xC4oD4).7C32, SmallGroup(432,410)

Series: Derived Chief Lower central Upper central

C1C6 — C4oD4xHe3
C1C3C6C3xC6C2xHe3C22xHe3D4xHe3 — C4oD4xHe3
C1C6 — C4oD4xHe3
C1C12 — C4oD4xHe3

Generators and relations for C4oD4xHe3
 G = < a,b,c,d,e,f | a4=c2=d3=e3=f3=1, b2=a2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=a2b, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=de-1, ef=fe >

Subgroups: 437 in 220 conjugacy classes, 119 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C2xC4, D4, Q8, C32, C12, C12, C12, C2xC6, C2xC6, C4oD4, C3xC6, C3xC6, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C3xQ8, He3, C3xC12, C62, C3xC4oD4, C3xC4oD4, C2xHe3, C2xHe3, C6xC12, D4xC32, Q8xC32, C4xHe3, C4xHe3, C22xHe3, C32xC4oD4, C2xC4xHe3, D4xHe3, Q8xHe3, C4oD4xHe3
Quotients: C1, C2, C3, C22, C6, C23, C32, C2xC6, C4oD4, C3xC6, C22xC6, He3, C62, C3xC4oD4, C2xHe3, C2xC62, C22xHe3, C32xC4oD4, C23xHe3, C4oD4xHe3

Smallest permutation representation of C4oD4xHe3
On 72 points
Generators in S72
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 41 3 43)(2 42 4 44)(5 48 7 46)(6 45 8 47)(9 63 11 61)(10 64 12 62)(13 56 15 54)(14 53 16 55)(17 39 19 37)(18 40 20 38)(21 57 23 59)(22 58 24 60)(25 65 27 67)(26 66 28 68)(29 52 31 50)(30 49 32 51)(33 69 35 71)(34 70 36 72)
(17 19)(18 20)(21 23)(22 24)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)
(1 26 35)(2 27 36)(3 28 33)(4 25 34)(5 31 38)(6 32 39)(7 29 40)(8 30 37)(9 15 60)(10 16 57)(11 13 58)(12 14 59)(17 47 49)(18 48 50)(19 45 51)(20 46 52)(21 62 53)(22 63 54)(23 64 55)(24 61 56)(41 66 71)(42 67 72)(43 68 69)(44 65 70)
(1 14 29)(2 15 30)(3 16 31)(4 13 32)(5 33 10)(6 34 11)(7 35 12)(8 36 9)(17 67 22)(18 68 23)(19 65 24)(20 66 21)(25 58 39)(26 59 40)(27 60 37)(28 57 38)(41 53 52)(42 54 49)(43 55 50)(44 56 51)(45 70 61)(46 71 62)(47 72 63)(48 69 64)
(1 35 40)(2 36 37)(3 33 38)(4 34 39)(5 57 31)(6 58 32)(7 59 29)(8 60 30)(9 27 15)(10 28 16)(11 25 13)(12 26 14)(17 42 72)(18 43 69)(19 44 70)(20 41 71)(21 52 46)(22 49 47)(23 50 48)(24 51 45)(53 62 66)(54 63 67)(55 64 68)(56 61 65)

G:=sub<Sym(72)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,41,3,43)(2,42,4,44)(5,48,7,46)(6,45,8,47)(9,63,11,61)(10,64,12,62)(13,56,15,54)(14,53,16,55)(17,39,19,37)(18,40,20,38)(21,57,23,59)(22,58,24,60)(25,65,27,67)(26,66,28,68)(29,52,31,50)(30,49,32,51)(33,69,35,71)(34,70,36,72), (17,19)(18,20)(21,23)(22,24)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72), (1,26,35)(2,27,36)(3,28,33)(4,25,34)(5,31,38)(6,32,39)(7,29,40)(8,30,37)(9,15,60)(10,16,57)(11,13,58)(12,14,59)(17,47,49)(18,48,50)(19,45,51)(20,46,52)(21,62,53)(22,63,54)(23,64,55)(24,61,56)(41,66,71)(42,67,72)(43,68,69)(44,65,70), (1,14,29)(2,15,30)(3,16,31)(4,13,32)(5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,67,22)(18,68,23)(19,65,24)(20,66,21)(25,58,39)(26,59,40)(27,60,37)(28,57,38)(41,53,52)(42,54,49)(43,55,50)(44,56,51)(45,70,61)(46,71,62)(47,72,63)(48,69,64), (1,35,40)(2,36,37)(3,33,38)(4,34,39)(5,57,31)(6,58,32)(7,59,29)(8,60,30)(9,27,15)(10,28,16)(11,25,13)(12,26,14)(17,42,72)(18,43,69)(19,44,70)(20,41,71)(21,52,46)(22,49,47)(23,50,48)(24,51,45)(53,62,66)(54,63,67)(55,64,68)(56,61,65)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,41,3,43)(2,42,4,44)(5,48,7,46)(6,45,8,47)(9,63,11,61)(10,64,12,62)(13,56,15,54)(14,53,16,55)(17,39,19,37)(18,40,20,38)(21,57,23,59)(22,58,24,60)(25,65,27,67)(26,66,28,68)(29,52,31,50)(30,49,32,51)(33,69,35,71)(34,70,36,72), (17,19)(18,20)(21,23)(22,24)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72), (1,26,35)(2,27,36)(3,28,33)(4,25,34)(5,31,38)(6,32,39)(7,29,40)(8,30,37)(9,15,60)(10,16,57)(11,13,58)(12,14,59)(17,47,49)(18,48,50)(19,45,51)(20,46,52)(21,62,53)(22,63,54)(23,64,55)(24,61,56)(41,66,71)(42,67,72)(43,68,69)(44,65,70), (1,14,29)(2,15,30)(3,16,31)(4,13,32)(5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,67,22)(18,68,23)(19,65,24)(20,66,21)(25,58,39)(26,59,40)(27,60,37)(28,57,38)(41,53,52)(42,54,49)(43,55,50)(44,56,51)(45,70,61)(46,71,62)(47,72,63)(48,69,64), (1,35,40)(2,36,37)(3,33,38)(4,34,39)(5,57,31)(6,58,32)(7,59,29)(8,60,30)(9,27,15)(10,28,16)(11,25,13)(12,26,14)(17,42,72)(18,43,69)(19,44,70)(20,41,71)(21,52,46)(22,49,47)(23,50,48)(24,51,45)(53,62,66)(54,63,67)(55,64,68)(56,61,65) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,41,3,43),(2,42,4,44),(5,48,7,46),(6,45,8,47),(9,63,11,61),(10,64,12,62),(13,56,15,54),(14,53,16,55),(17,39,19,37),(18,40,20,38),(21,57,23,59),(22,58,24,60),(25,65,27,67),(26,66,28,68),(29,52,31,50),(30,49,32,51),(33,69,35,71),(34,70,36,72)], [(17,19),(18,20),(21,23),(22,24),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72)], [(1,26,35),(2,27,36),(3,28,33),(4,25,34),(5,31,38),(6,32,39),(7,29,40),(8,30,37),(9,15,60),(10,16,57),(11,13,58),(12,14,59),(17,47,49),(18,48,50),(19,45,51),(20,46,52),(21,62,53),(22,63,54),(23,64,55),(24,61,56),(41,66,71),(42,67,72),(43,68,69),(44,65,70)], [(1,14,29),(2,15,30),(3,16,31),(4,13,32),(5,33,10),(6,34,11),(7,35,12),(8,36,9),(17,67,22),(18,68,23),(19,65,24),(20,66,21),(25,58,39),(26,59,40),(27,60,37),(28,57,38),(41,53,52),(42,54,49),(43,55,50),(44,56,51),(45,70,61),(46,71,62),(47,72,63),(48,69,64)], [(1,35,40),(2,36,37),(3,33,38),(4,34,39),(5,57,31),(6,58,32),(7,59,29),(8,60,30),(9,27,15),(10,28,16),(11,25,13),(12,26,14),(17,42,72),(18,43,69),(19,44,70),(20,41,71),(21,52,46),(22,49,47),(23,50,48),(24,51,45),(53,62,66),(54,63,67),(55,64,68),(56,61,65)]])

110 conjugacy classes

class 1 2A2B2C2D3A3B3C···3J4A4B4C4D4E6A6B6C···6H6I···6P6Q···6AN12A12B12C12D12E···12J12K···12Z12AA···12AX
order12222333···344444666···66···66···61212121212···1212···1212···12
size11222113···311222112···23···36···611112···23···36···6

110 irreducible representations

dim111111112233336
type++++
imageC1C2C2C2C3C6C6C6C4oD4C3xC4oD4He3C2xHe3C2xHe3C2xHe3C4oD4xHe3
kernelC4oD4xHe3C2xC4xHe3D4xHe3Q8xHe3C32xC4oD4C6xC12D4xC32Q8xC32He3C32C4oD4C2xC4D4Q8C1
# reps133182424821626624

Matrix representation of C4oD4xHe3 in GL5(F13)

80000
08000
001200
000120
000012
,
121000
111000
001200
000120
000012
,
112000
012000
00100
00010
00001
,
10000
01000
00010
00001
00100
,
10000
01000
00900
00090
00009
,
90000
09000
00009
00100
00030

G:=sub<GL(5,GF(13))| [8,0,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,11,0,0,0,1,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[9,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,9,0,0] >;

C4oD4xHe3 in GAP, Magma, Sage, TeX

C_4\circ D_4\times {\rm He}_3
% in TeX

G:=Group("C4oD4xHe3");
// GroupNames label

G:=SmallGroup(432,410);
// by ID

G=gap.SmallGroup(432,410);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-3,1037,394,760]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=c^2=d^3=e^3=f^3=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=a^2*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d*e^-1,e*f=f*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<