Copied to
clipboard

G = C2xD4xHe3order 432 = 24·33

Direct product of C2, D4 and He3

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C2xD4xHe3, C12.27C62, (C6xC12):6C6, C4:(C22xHe3), C62:3(C2xC6), (C2xC62):1C6, (D4xC32):5C6, C32:11(C6xD4), (C2xC6).8C62, C23:2(C2xHe3), C6.21(C2xC62), (C23xHe3):1C2, (C6xD4).2C32, C6.22(D4xC32), C2.2(C23xHe3), (C4xHe3):10C22, C22:2(C22xHe3), (C2xHe3).40C23, (C22xHe3):6C22, (D4xC3xC6):C3, C3.2(D4xC3xC6), (C3xC6):6(C3xD4), (C3xC12):4(C2xC6), (C2xC4xHe3):10C2, (C2xC4):2(C2xHe3), (C2xC12).17(C3xC6), (C3xD4).10(C3xC6), (C3xC6).31(C22xC6), (C22xC6).17(C3xC6), SmallGroup(432,404)

Series: Derived Chief Lower central Upper central

C1C6 — C2xD4xHe3
C1C3C6C3xC6C2xHe3C22xHe3D4xHe3 — C2xD4xHe3
C1C6 — C2xD4xHe3
C1C2xC6 — C2xD4xHe3

Generators and relations for C2xD4xHe3
 G = < a,b,c,d,e,f | a2=b4=c2=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=de-1, ef=fe >

Subgroups: 665 in 297 conjugacy classes, 133 normal (15 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, C6, C6, C6, C2xC4, D4, C23, C32, C12, C12, C2xC6, C2xC6, C2xC6, C2xD4, C3xC6, C3xC6, C2xC12, C2xC12, C3xD4, C3xD4, C22xC6, C22xC6, He3, C3xC12, C62, C62, C6xD4, C6xD4, C2xHe3, C2xHe3, C2xHe3, C6xC12, D4xC32, C2xC62, C4xHe3, C22xHe3, C22xHe3, C22xHe3, D4xC3xC6, C2xC4xHe3, D4xHe3, C23xHe3, C2xD4xHe3
Quotients: C1, C2, C3, C22, C6, D4, C23, C32, C2xC6, C2xD4, C3xC6, C3xD4, C22xC6, He3, C62, C6xD4, C2xHe3, D4xC32, C2xC62, C22xHe3, D4xC3xC6, D4xHe3, C23xHe3, C2xD4xHe3

Smallest permutation representation of C2xD4xHe3
On 72 points
Generators in S72
(1 15)(2 16)(3 13)(4 14)(5 65)(6 66)(7 67)(8 68)(9 31)(10 32)(11 29)(12 30)(17 25)(18 26)(19 27)(20 28)(21 59)(22 60)(23 57)(24 58)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 71)(50 72)(51 69)(52 70)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 16)(2 15)(3 14)(4 13)(5 66)(6 65)(7 68)(8 67)(9 32)(10 31)(11 30)(12 29)(17 26)(18 25)(19 28)(20 27)(21 60)(22 59)(23 58)(24 57)(33 42)(34 41)(35 44)(36 43)(37 46)(38 45)(39 48)(40 47)(49 72)(50 71)(51 70)(52 69)(53 62)(54 61)(55 64)(56 63)
(1 63 41)(2 64 42)(3 61 43)(4 62 44)(5 45 27)(6 46 28)(7 47 25)(8 48 26)(9 49 57)(10 50 58)(11 51 59)(12 52 60)(13 53 35)(14 54 36)(15 55 33)(16 56 34)(17 67 39)(18 68 40)(19 65 37)(20 66 38)(21 29 69)(22 30 70)(23 31 71)(24 32 72)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 67 29)(14 68 30)(15 65 31)(16 66 32)(17 21 35)(18 22 36)(19 23 33)(20 24 34)(25 59 43)(26 60 44)(27 57 41)(28 58 42)(37 71 55)(38 72 56)(39 69 53)(40 70 54)(45 49 63)(46 50 64)(47 51 61)(48 52 62)
(17 35 21)(18 36 22)(19 33 23)(20 34 24)(25 43 59)(26 44 60)(27 41 57)(28 42 58)(37 71 55)(38 72 56)(39 69 53)(40 70 54)(45 49 63)(46 50 64)(47 51 61)(48 52 62)

G:=sub<Sym(72)| (1,15)(2,16)(3,13)(4,14)(5,65)(6,66)(7,67)(8,68)(9,31)(10,32)(11,29)(12,30)(17,25)(18,26)(19,27)(20,28)(21,59)(22,60)(23,57)(24,58)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,71)(50,72)(51,69)(52,70)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,16)(2,15)(3,14)(4,13)(5,66)(6,65)(7,68)(8,67)(9,32)(10,31)(11,30)(12,29)(17,26)(18,25)(19,28)(20,27)(21,60)(22,59)(23,58)(24,57)(33,42)(34,41)(35,44)(36,43)(37,46)(38,45)(39,48)(40,47)(49,72)(50,71)(51,70)(52,69)(53,62)(54,61)(55,64)(56,63), (1,63,41)(2,64,42)(3,61,43)(4,62,44)(5,45,27)(6,46,28)(7,47,25)(8,48,26)(9,49,57)(10,50,58)(11,51,59)(12,52,60)(13,53,35)(14,54,36)(15,55,33)(16,56,34)(17,67,39)(18,68,40)(19,65,37)(20,66,38)(21,29,69)(22,30,70)(23,31,71)(24,32,72), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,67,29)(14,68,30)(15,65,31)(16,66,32)(17,21,35)(18,22,36)(19,23,33)(20,24,34)(25,59,43)(26,60,44)(27,57,41)(28,58,42)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62), (17,35,21)(18,36,22)(19,33,23)(20,34,24)(25,43,59)(26,44,60)(27,41,57)(28,42,58)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62)>;

G:=Group( (1,15)(2,16)(3,13)(4,14)(5,65)(6,66)(7,67)(8,68)(9,31)(10,32)(11,29)(12,30)(17,25)(18,26)(19,27)(20,28)(21,59)(22,60)(23,57)(24,58)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,71)(50,72)(51,69)(52,70)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,16)(2,15)(3,14)(4,13)(5,66)(6,65)(7,68)(8,67)(9,32)(10,31)(11,30)(12,29)(17,26)(18,25)(19,28)(20,27)(21,60)(22,59)(23,58)(24,57)(33,42)(34,41)(35,44)(36,43)(37,46)(38,45)(39,48)(40,47)(49,72)(50,71)(51,70)(52,69)(53,62)(54,61)(55,64)(56,63), (1,63,41)(2,64,42)(3,61,43)(4,62,44)(5,45,27)(6,46,28)(7,47,25)(8,48,26)(9,49,57)(10,50,58)(11,51,59)(12,52,60)(13,53,35)(14,54,36)(15,55,33)(16,56,34)(17,67,39)(18,68,40)(19,65,37)(20,66,38)(21,29,69)(22,30,70)(23,31,71)(24,32,72), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,67,29)(14,68,30)(15,65,31)(16,66,32)(17,21,35)(18,22,36)(19,23,33)(20,24,34)(25,59,43)(26,60,44)(27,57,41)(28,58,42)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62), (17,35,21)(18,36,22)(19,33,23)(20,34,24)(25,43,59)(26,44,60)(27,41,57)(28,42,58)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62) );

G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,65),(6,66),(7,67),(8,68),(9,31),(10,32),(11,29),(12,30),(17,25),(18,26),(19,27),(20,28),(21,59),(22,60),(23,57),(24,58),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,71),(50,72),(51,69),(52,70),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,16),(2,15),(3,14),(4,13),(5,66),(6,65),(7,68),(8,67),(9,32),(10,31),(11,30),(12,29),(17,26),(18,25),(19,28),(20,27),(21,60),(22,59),(23,58),(24,57),(33,42),(34,41),(35,44),(36,43),(37,46),(38,45),(39,48),(40,47),(49,72),(50,71),(51,70),(52,69),(53,62),(54,61),(55,64),(56,63)], [(1,63,41),(2,64,42),(3,61,43),(4,62,44),(5,45,27),(6,46,28),(7,47,25),(8,48,26),(9,49,57),(10,50,58),(11,51,59),(12,52,60),(13,53,35),(14,54,36),(15,55,33),(16,56,34),(17,67,39),(18,68,40),(19,65,37),(20,66,38),(21,29,69),(22,30,70),(23,31,71),(24,32,72)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,67,29),(14,68,30),(15,65,31),(16,66,32),(17,21,35),(18,22,36),(19,23,33),(20,24,34),(25,59,43),(26,60,44),(27,57,41),(28,58,42),(37,71,55),(38,72,56),(39,69,53),(40,70,54),(45,49,63),(46,50,64),(47,51,61),(48,52,62)], [(17,35,21),(18,36,22),(19,33,23),(20,34,24),(25,43,59),(26,44,60),(27,41,57),(28,42,58),(37,71,55),(38,72,56),(39,69,53),(40,70,54),(45,49,63),(46,50,64),(47,51,61),(48,52,62)]])

110 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C···3J4A4B6A···6F6G···6N6O···6AL6AM···6BR12A12B12C12D12E···12T
order12222222333···3446···66···66···66···61212121212···12
size11112222113···3221···12···23···36···622226···6

110 irreducible representations

dim111111112233336
type+++++
imageC1C2C2C2C3C6C6C6D4C3xD4He3C2xHe3C2xHe3C2xHe3D4xHe3
kernelC2xD4xHe3C2xC4xHe3D4xHe3C23xHe3D4xC3xC6C6xC12D4xC32C2xC62C2xHe3C3xC6C2xD4C2xC4D4C23C2
# reps114288321621622844

Matrix representation of C2xD4xHe3 in GL5(F13)

120000
012000
001200
000120
000012
,
128000
31000
00100
00010
00001
,
128000
01000
001200
000120
000012
,
30000
03000
00010
00001
00100
,
10000
01000
00300
00030
00003
,
90000
09000
00100
00090
00003

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,3,0,0,0,8,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,8,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[3,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[9,0,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,3] >;

C2xD4xHe3 in GAP, Magma, Sage, TeX

C_2\times D_4\times {\rm He}_3
% in TeX

G:=Group("C2xD4xHe3");
// GroupNames label

G:=SmallGroup(432,404);
// by ID

G=gap.SmallGroup(432,404);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-3,1037,760]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d*e^-1,e*f=f*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<