Copied to
clipboard

G = D7xC4wrC2order 448 = 26·7

Direct product of D7 and C4wrC2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7xC4wrC2, C42:31D14, M4(2):15D14, D4:7(C4xD7), (D4xD7):3C4, Q8:7(C4xD7), (Q8xD7):3C4, D28:5(C2xC4), D4:2D7:3C4, (C4xC28):9C22, Q8:2D7:3C4, (C4xD7).32D4, C4.200(D4xD7), (D7xC42):1C2, D28:4C4:5C2, Dic14:C4:3C2, Dic14:5(C2xC4), C4oD4.18D14, C28.359(C2xD4), (D7xM4(2)):8C2, C22.27(D4xD7), D4:2Dic7:1C2, C28.17(C22xC4), C4oD28.9C22, (C22xD7).80D4, C4.Dic7:2C22, (C2xC28).260C23, (C2xDic7).159D4, (C4xDic7):61C22, D14.20(C22:C4), (C7xM4(2)):13C22, Dic7.10(C22:C4), C7:1(C2xC4wrC2), (C7xC4wrC2):5C2, C4.17(C2xC4xD7), (C7xD4):5(C2xC4), (C7xQ8):5(C2xC4), (D7xC4oD4).1C2, (C4xD7).16(C2xC4), (C2xC14).24(C2xD4), C2.25(D7xC22:C4), C14.24(C2xC22:C4), (C7xC4oD4).1C22, (C2xC4xD7).230C22, (C2xC4).367(C22xD7), SmallGroup(448,354)

Series: Derived Chief Lower central Upper central

C1C28 — D7xC4wrC2
C1C7C14C28C2xC28C2xC4xD7D7xC4oD4 — D7xC4wrC2
C7C14C28 — D7xC4wrC2
C1C4C2xC4C4wrC2

Generators and relations for D7xC4wrC2
 G = < a,b,c,d,e | a7=b2=c4=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec, ede-1=c-1d >

Subgroups: 892 in 170 conjugacy classes, 53 normal (51 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, D7, D7, C14, C14, C42, C42, C2xC8, M4(2), M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, Dic7, Dic7, C28, C28, D14, D14, C2xC14, C2xC14, C4wrC2, C4wrC2, C2xC42, C2xM4(2), C2xC4oD4, C7:C8, C56, Dic14, Dic14, C4xD7, C4xD7, D28, D28, C2xDic7, C2xDic7, C7:D4, C2xC28, C2xC28, C7xD4, C7xD4, C7xQ8, C22xD7, C22xD7, C2xC4wrC2, C8xD7, C8:D7, C4.Dic7, C4xDic7, C4xDic7, C4xC28, C7xM4(2), C2xC4xD7, C2xC4xD7, C4oD28, C4oD28, D4xD7, D4xD7, D4:2D7, D4:2D7, Q8xD7, Q8:2D7, C7xC4oD4, Dic14:C4, D28:4C4, D4:2Dic7, C7xC4wrC2, D7xC42, D7xM4(2), D7xC4oD4, D7xC4wrC2
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D7, C22:C4, C22xC4, C2xD4, D14, C4wrC2, C2xC22:C4, C4xD7, C22xD7, C2xC4wrC2, C2xC4xD7, D4xD7, D7xC22:C4, D7xC4wrC2

Smallest permutation representation of D7xC4wrC2
On 56 points
Generators in S56
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)(43 45)(46 49)(47 48)(50 52)(53 56)(54 55)
(1 20 13 27)(2 21 14 28)(3 15 8 22)(4 16 9 23)(5 17 10 24)(6 18 11 25)(7 19 12 26)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)
(1 34)(2 35)(3 29)(4 30)(5 31)(6 32)(7 33)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)

G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41),(43,45),(46,49),(47,48),(50,52),(53,56),(54,55)], [(1,20,13,27),(2,21,14,28),(3,15,8,22),(4,16,9,23),(5,17,10,24),(6,18,11,25),(7,19,12,26),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49)], [(1,34),(2,35),(3,29),(4,30),(5,31),(6,32),(7,33),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C···4G4H4I4J4K···4O4P7A7B7C8A8B8C8D14A14B14C14D14E14F14G14H14I28A···28F28G···28U28V28W28X56A···56F
order12222222444···44444···44777888814141414141414141428···2828···2828282856···56
size1124771428112···247714···14282224428282224448882···24···48888···8

70 irreducible representations

dim1111111111112222222222444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D4D4D7D14D14D14C4wrC2C4xD7C4xD7D4xD7D4xD7D7xC4wrC2
kernelD7xC4wrC2Dic14:C4D28:4C4D4:2Dic7C7xC4wrC2D7xC42D7xM4(2)D7xC4oD4D4xD7D4:2D7Q8xD7Q8:2D7C4xD7C2xDic7C22xD7C4wrC2C42M4(2)C4oD4D7D4Q8C4C22C1
# reps11111111222221133338663312

Matrix representation of D7xC4wrC2 in GL4(F113) generated by

104100
413300
0010
0001
,
3311200
718000
0010
0001
,
1000
0100
00980
002815
,
112000
011200
001106
000112
,
1000
0100
001120
003015
G:=sub<GL(4,GF(113))| [104,41,0,0,1,33,0,0,0,0,1,0,0,0,0,1],[33,71,0,0,112,80,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,98,28,0,0,0,15],[112,0,0,0,0,112,0,0,0,0,1,0,0,0,106,112],[1,0,0,0,0,1,0,0,0,0,112,30,0,0,0,15] >;

D7xC4wrC2 in GAP, Magma, Sage, TeX

D_7\times C_4\wr C_2
% in TeX

G:=Group("D7xC4wrC2");
// GroupNames label

G:=SmallGroup(448,354);
// by ID

G=gap.SmallGroup(448,354);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,58,136,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^4=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^-1*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<