Copied to
clipboard

G = D4.5D4order 64 = 26

5th non-split extension by D4 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D4.5D4, C8.20D4, Q8.5D4, M4(2).5C22, (C2xQ16):8C2, C8oD4.1C2, C4.60(C2xD4), C8.C22.C2, C8.C4:7C2, C4.10D4:4C2, (C2xC4).10C23, (C2xC8).19C22, C2.25(C4:D4), C4oD4.11C22, C22.8(C4oD4), (C2xQ8).16C22, SmallGroup(64,154)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — D4.5D4
C1C2C4C2xC4C4oD4C8oD4 — D4.5D4
C1C2C2xC4 — D4.5D4
C1C2C2xC4 — D4.5D4
C1C2C2C2xC4 — D4.5D4

Generators and relations for D4.5D4
 G = < a,b,c,d | a4=b2=1, c4=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c3 >

Subgroups: 81 in 50 conjugacy classes, 25 normal (17 characteristic)
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C4:D4, D4.5D4
2C2
4C2
2C4
2C22
4C4
4C4
2Q8
2C2xC4
2C2xC4
2Q8
2C8
2C8
2Q8
2C8
2C2xC4
2D4
2Q8
2Q16
2Q16
2SD16
2SD16
2Q16
2C2xC8
2M4(2)
2Q16

Character table of D4.5D4

 class 12A2B2C4A4B4C4D4E8A8B8C8D8E8F8G
 size 1124224882244488
ρ11111111111111111    trivial
ρ2111-111-1-1-1111-1-111    linear of order 2
ρ3111-111-11-1-1-1-1111-1    linear of order 2
ρ41111111-11-1-1-1-1-11-1    linear of order 2
ρ5111-111-111111-1-1-1-1    linear of order 2
ρ61111111-1-111111-1-1    linear of order 2
ρ711111111-1-1-1-1-1-1-11    linear of order 2
ρ8111-111-1-11-1-1-111-11    linear of order 2
ρ922-222-2-2000000000    orthogonal lifted from D4
ρ1022-2-22-22000000000    orthogonal lifted from D4
ρ1122-20-2200022-20000    orthogonal lifted from D4
ρ1222-20-22000-2-220000    orthogonal lifted from D4
ρ132220-2-2000000-2i2i00    complex lifted from C4oD4
ρ142220-2-20000002i-2i00    complex lifted from C4oD4
ρ154-40000000-222200000    symplectic faithful, Schur index 2
ρ164-4000000022-2200000    symplectic faithful, Schur index 2

Smallest permutation representation of D4.5D4
On 32 points
Generators in S32
(1 19 5 23)(2 20 6 24)(3 21 7 17)(4 22 8 18)(9 27 13 31)(10 28 14 32)(11 29 15 25)(12 30 16 26)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27 5 31)(2 26 6 30)(3 25 7 29)(4 32 8 28)(9 23 13 19)(10 22 14 18)(11 21 15 17)(12 20 16 24)

G:=sub<Sym(32)| (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,27,13,31)(10,28,14,32)(11,29,15,25)(12,30,16,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,5,31)(2,26,6,30)(3,25,7,29)(4,32,8,28)(9,23,13,19)(10,22,14,18)(11,21,15,17)(12,20,16,24)>;

G:=Group( (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,27,13,31)(10,28,14,32)(11,29,15,25)(12,30,16,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,5,31)(2,26,6,30)(3,25,7,29)(4,32,8,28)(9,23,13,19)(10,22,14,18)(11,21,15,17)(12,20,16,24) );

G=PermutationGroup([[(1,19,5,23),(2,20,6,24),(3,21,7,17),(4,22,8,18),(9,27,13,31),(10,28,14,32),(11,29,15,25),(12,30,16,26)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27,5,31),(2,26,6,30),(3,25,7,29),(4,32,8,28),(9,23,13,19),(10,22,14,18),(11,21,15,17),(12,20,16,24)]])

D4.5D4 is a maximal subgroup of
M4(2).10C23  C8.S4
 D4p.D4: D8.3D4  D8.12D4  D8.13D4  D8oSD16  D8oQ16  D12.7D4  C24.18D4  C24.29D4 ...
 M4(2).D2p: D4.4D8  D4.5D8  M4(2).38D4  Q8.10D12  M4(2).16D6  D4.5D20  M4(2).16D10  D4.5D28 ...
D4.5D4 is a maximal quotient of
 M4(2).D2p: M4(2).49D4  M4(2).33D4  M4(2).6D4  M4(2).11D4  M4(2).13D4  D12.7D4  C24.18D4  Q8.10D12 ...
 (C2xC8).D2p: C8.28D8  Q8:1Q16  C8:10SD16  C8:7Q16  D4.3SD16  Q8.3SD16  C8.D8  C8.SD16 ...

Matrix representation of D4.5D4 in GL4(F7) generated by

0651
3056
3361
1631
,
1253
4022
6602
6146
,
5026
6556
6112
2262
,
4245
6335
6141
2253
G:=sub<GL(4,GF(7))| [0,3,3,1,6,0,3,6,5,5,6,3,1,6,1,1],[1,4,6,6,2,0,6,1,5,2,0,4,3,2,2,6],[5,6,6,2,0,5,1,2,2,5,1,6,6,6,2,2],[4,6,6,2,2,3,1,2,4,3,4,5,5,5,1,3] >;

D4.5D4 in GAP, Magma, Sage, TeX

D_4._5D_4
% in TeX

G:=Group("D4.5D4");
// GroupNames label

G:=SmallGroup(64,154);
// by ID

G=gap.SmallGroup(64,154);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,247,362,963,117,1444,376,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^4=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^3>;
// generators/relations

Export

Subgroup lattice of D4.5D4 in TeX
Character table of D4.5D4 in TeX

׿
x
:
Z
F
o
wr
Q
<