p-group, cyclic, elementary abelian, simple, monomial
Aliases: C11, also denoted Z11, SmallGroup(11,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C11 |
C1 — C11 |
C1 — C11 |
C1 — C11 |
Generators and relations for C11
G = < a | a11=1 >
Character table of C11
class | 1 | 11A | 11B | 11C | 11D | 11E | 11F | 11G | 11H | 11I | 11J | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ1110 | ζ112 | ζ113 | ζ114 | ζ115 | ζ116 | ζ117 | ζ118 | ζ119 | ζ11 | linear of order 11 faithful |
ρ3 | 1 | ζ119 | ζ114 | ζ116 | ζ118 | ζ1110 | ζ11 | ζ113 | ζ115 | ζ117 | ζ112 | linear of order 11 faithful |
ρ4 | 1 | ζ118 | ζ116 | ζ119 | ζ11 | ζ114 | ζ117 | ζ1110 | ζ112 | ζ115 | ζ113 | linear of order 11 faithful |
ρ5 | 1 | ζ117 | ζ118 | ζ11 | ζ115 | ζ119 | ζ112 | ζ116 | ζ1110 | ζ113 | ζ114 | linear of order 11 faithful |
ρ6 | 1 | ζ116 | ζ1110 | ζ114 | ζ119 | ζ113 | ζ118 | ζ112 | ζ117 | ζ11 | ζ115 | linear of order 11 faithful |
ρ7 | 1 | ζ115 | ζ11 | ζ117 | ζ112 | ζ118 | ζ113 | ζ119 | ζ114 | ζ1110 | ζ116 | linear of order 11 faithful |
ρ8 | 1 | ζ114 | ζ113 | ζ1110 | ζ116 | ζ112 | ζ119 | ζ115 | ζ11 | ζ118 | ζ117 | linear of order 11 faithful |
ρ9 | 1 | ζ113 | ζ115 | ζ112 | ζ1110 | ζ117 | ζ114 | ζ11 | ζ119 | ζ116 | ζ118 | linear of order 11 faithful |
ρ10 | 1 | ζ112 | ζ117 | ζ115 | ζ113 | ζ11 | ζ1110 | ζ118 | ζ116 | ζ114 | ζ119 | linear of order 11 faithful |
ρ11 | 1 | ζ11 | ζ119 | ζ118 | ζ117 | ζ116 | ζ115 | ζ114 | ζ113 | ζ112 | ζ1110 | linear of order 11 faithful |
(1 2 3 4 5 6 7 8 9 10 11)
G:=sub<Sym(11)| (1,2,3,4,5,6,7,8,9,10,11)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11)]])
G:=TransitiveGroup(11,1);
C11 is a maximal subgroup of
D11 C11⋊C5 C121 C23⋊C11
C11 is a maximal quotient of C121 C23⋊C11
action | f(x) | Disc(f) |
---|---|---|
11T1 | x11+x10-10x9-9x8+36x7+28x6-56x5-35x4+35x3+15x2-6x-1 | 2310 |
Matrix representation of C11 ►in GL1(𝔽23) generated by
8 |
G:=sub<GL(1,GF(23))| [8] >;
C11 in GAP, Magma, Sage, TeX
C_{11}
% in TeX
G:=Group("C11");
// GroupNames label
G:=SmallGroup(11,1);
// by ID
G=gap.SmallGroup(11,1);
# by ID
G:=PCGroup([1,-11]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^11=1>;
// generators/relations
Export
Subgroup lattice of C11 in TeX
Character table of C11 in TeX