metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D11, C11⋊C2, sometimes denoted D22 or Dih11 or Dih22, SmallGroup(22,1)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — D11 |
Generators and relations for D11
G = < a,b | a11=b2=1, bab=a-1 >
Character table of D11
class | 1 | 2 | 11A | 11B | 11C | 11D | 11E | |
size | 1 | 11 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | orthogonal faithful |
ρ4 | 2 | 0 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | orthogonal faithful |
ρ5 | 2 | 0 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | orthogonal faithful |
ρ6 | 2 | 0 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | orthogonal faithful |
ρ7 | 2 | 0 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11)
(1 11)(2 10)(3 9)(4 8)(5 7)
G:=sub<Sym(11)| (1,2,3,4,5,6,7,8,9,10,11), (1,11)(2,10)(3,9)(4,8)(5,7)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11), (1,11)(2,10)(3,9)(4,8)(5,7) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11)], [(1,11),(2,10),(3,9),(4,8),(5,7)]])
G:=TransitiveGroup(11,2);
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 22)(11 21)
G:=sub<Sym(22)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,22),(11,21)]])
G:=TransitiveGroup(22,2);
D11 is a maximal subgroup of
F11 C11⋊D11
D11p: D33 D55 D77 D121 D143 D187 D209 ...
D11 is a maximal quotient of
Dic11 C11⋊D11
D11p: D33 D55 D77 D121 D143 D187 D209 ...
action | f(x) | Disc(f) |
---|---|---|
11T2 | x11-5x10-4x9+54x8-53x7-127x6+208x5+69x4-222x3+29x2+56x-5 | 54·12975 |
Matrix representation of D11 ►in GL2(𝔽23) generated by
10 | 22 |
1 | 0 |
10 | 22 |
7 | 13 |
G:=sub<GL(2,GF(23))| [10,1,22,0],[10,7,22,13] >;
D11 in GAP, Magma, Sage, TeX
D_{11}
% in TeX
G:=Group("D11");
// GroupNames label
G:=SmallGroup(22,1);
// by ID
G=gap.SmallGroup(22,1);
# by ID
G:=PCGroup([2,-2,-11,81]);
// Polycyclic
G:=Group<a,b|a^11=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D11 in TeX
Character table of D11 in TeX