p-group, cyclic, elementary abelian, simple, monomial
Aliases: C23, also denoted Z23, SmallGroup(23,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C23 |
C1 — C23 |
C1 — C23 |
C1 — C23 |
Generators and relations for C23
G = < a | a23=1 >
Character table of C23
class | 1 | 23A | 23B | 23C | 23D | 23E | 23F | 23G | 23H | 23I | 23J | 23K | 23L | 23M | 23N | 23O | 23P | 23Q | 23R | 23S | 23T | 23U | 23V | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ2322 | ζ232 | ζ233 | ζ234 | ζ235 | ζ236 | ζ237 | ζ238 | ζ239 | ζ2310 | ζ2311 | ζ2312 | ζ2313 | ζ2314 | ζ2315 | ζ2316 | ζ2317 | ζ2318 | ζ2319 | ζ2320 | ζ2321 | ζ23 | linear of order 23 faithful |
ρ3 | 1 | ζ2321 | ζ234 | ζ236 | ζ238 | ζ2310 | ζ2312 | ζ2314 | ζ2316 | ζ2318 | ζ2320 | ζ2322 | ζ23 | ζ233 | ζ235 | ζ237 | ζ239 | ζ2311 | ζ2313 | ζ2315 | ζ2317 | ζ2319 | ζ232 | linear of order 23 faithful |
ρ4 | 1 | ζ2320 | ζ236 | ζ239 | ζ2312 | ζ2315 | ζ2318 | ζ2321 | ζ23 | ζ234 | ζ237 | ζ2310 | ζ2313 | ζ2316 | ζ2319 | ζ2322 | ζ232 | ζ235 | ζ238 | ζ2311 | ζ2314 | ζ2317 | ζ233 | linear of order 23 faithful |
ρ5 | 1 | ζ2319 | ζ238 | ζ2312 | ζ2316 | ζ2320 | ζ23 | ζ235 | ζ239 | ζ2313 | ζ2317 | ζ2321 | ζ232 | ζ236 | ζ2310 | ζ2314 | ζ2318 | ζ2322 | ζ233 | ζ237 | ζ2311 | ζ2315 | ζ234 | linear of order 23 faithful |
ρ6 | 1 | ζ2318 | ζ2310 | ζ2315 | ζ2320 | ζ232 | ζ237 | ζ2312 | ζ2317 | ζ2322 | ζ234 | ζ239 | ζ2314 | ζ2319 | ζ23 | ζ236 | ζ2311 | ζ2316 | ζ2321 | ζ233 | ζ238 | ζ2313 | ζ235 | linear of order 23 faithful |
ρ7 | 1 | ζ2317 | ζ2312 | ζ2318 | ζ23 | ζ237 | ζ2313 | ζ2319 | ζ232 | ζ238 | ζ2314 | ζ2320 | ζ233 | ζ239 | ζ2315 | ζ2321 | ζ234 | ζ2310 | ζ2316 | ζ2322 | ζ235 | ζ2311 | ζ236 | linear of order 23 faithful |
ρ8 | 1 | ζ2316 | ζ2314 | ζ2321 | ζ235 | ζ2312 | ζ2319 | ζ233 | ζ2310 | ζ2317 | ζ23 | ζ238 | ζ2315 | ζ2322 | ζ236 | ζ2313 | ζ2320 | ζ234 | ζ2311 | ζ2318 | ζ232 | ζ239 | ζ237 | linear of order 23 faithful |
ρ9 | 1 | ζ2315 | ζ2316 | ζ23 | ζ239 | ζ2317 | ζ232 | ζ2310 | ζ2318 | ζ233 | ζ2311 | ζ2319 | ζ234 | ζ2312 | ζ2320 | ζ235 | ζ2313 | ζ2321 | ζ236 | ζ2314 | ζ2322 | ζ237 | ζ238 | linear of order 23 faithful |
ρ10 | 1 | ζ2314 | ζ2318 | ζ234 | ζ2313 | ζ2322 | ζ238 | ζ2317 | ζ233 | ζ2312 | ζ2321 | ζ237 | ζ2316 | ζ232 | ζ2311 | ζ2320 | ζ236 | ζ2315 | ζ23 | ζ2310 | ζ2319 | ζ235 | ζ239 | linear of order 23 faithful |
ρ11 | 1 | ζ2313 | ζ2320 | ζ237 | ζ2317 | ζ234 | ζ2314 | ζ23 | ζ2311 | ζ2321 | ζ238 | ζ2318 | ζ235 | ζ2315 | ζ232 | ζ2312 | ζ2322 | ζ239 | ζ2319 | ζ236 | ζ2316 | ζ233 | ζ2310 | linear of order 23 faithful |
ρ12 | 1 | ζ2312 | ζ2322 | ζ2310 | ζ2321 | ζ239 | ζ2320 | ζ238 | ζ2319 | ζ237 | ζ2318 | ζ236 | ζ2317 | ζ235 | ζ2316 | ζ234 | ζ2315 | ζ233 | ζ2314 | ζ232 | ζ2313 | ζ23 | ζ2311 | linear of order 23 faithful |
ρ13 | 1 | ζ2311 | ζ23 | ζ2313 | ζ232 | ζ2314 | ζ233 | ζ2315 | ζ234 | ζ2316 | ζ235 | ζ2317 | ζ236 | ζ2318 | ζ237 | ζ2319 | ζ238 | ζ2320 | ζ239 | ζ2321 | ζ2310 | ζ2322 | ζ2312 | linear of order 23 faithful |
ρ14 | 1 | ζ2310 | ζ233 | ζ2316 | ζ236 | ζ2319 | ζ239 | ζ2322 | ζ2312 | ζ232 | ζ2315 | ζ235 | ζ2318 | ζ238 | ζ2321 | ζ2311 | ζ23 | ζ2314 | ζ234 | ζ2317 | ζ237 | ζ2320 | ζ2313 | linear of order 23 faithful |
ρ15 | 1 | ζ239 | ζ235 | ζ2319 | ζ2310 | ζ23 | ζ2315 | ζ236 | ζ2320 | ζ2311 | ζ232 | ζ2316 | ζ237 | ζ2321 | ζ2312 | ζ233 | ζ2317 | ζ238 | ζ2322 | ζ2313 | ζ234 | ζ2318 | ζ2314 | linear of order 23 faithful |
ρ16 | 1 | ζ238 | ζ237 | ζ2322 | ζ2314 | ζ236 | ζ2321 | ζ2313 | ζ235 | ζ2320 | ζ2312 | ζ234 | ζ2319 | ζ2311 | ζ233 | ζ2318 | ζ2310 | ζ232 | ζ2317 | ζ239 | ζ23 | ζ2316 | ζ2315 | linear of order 23 faithful |
ρ17 | 1 | ζ237 | ζ239 | ζ232 | ζ2318 | ζ2311 | ζ234 | ζ2320 | ζ2313 | ζ236 | ζ2322 | ζ2315 | ζ238 | ζ23 | ζ2317 | ζ2310 | ζ233 | ζ2319 | ζ2312 | ζ235 | ζ2321 | ζ2314 | ζ2316 | linear of order 23 faithful |
ρ18 | 1 | ζ236 | ζ2311 | ζ235 | ζ2322 | ζ2316 | ζ2310 | ζ234 | ζ2321 | ζ2315 | ζ239 | ζ233 | ζ2320 | ζ2314 | ζ238 | ζ232 | ζ2319 | ζ2313 | ζ237 | ζ23 | ζ2318 | ζ2312 | ζ2317 | linear of order 23 faithful |
ρ19 | 1 | ζ235 | ζ2313 | ζ238 | ζ233 | ζ2321 | ζ2316 | ζ2311 | ζ236 | ζ23 | ζ2319 | ζ2314 | ζ239 | ζ234 | ζ2322 | ζ2317 | ζ2312 | ζ237 | ζ232 | ζ2320 | ζ2315 | ζ2310 | ζ2318 | linear of order 23 faithful |
ρ20 | 1 | ζ234 | ζ2315 | ζ2311 | ζ237 | ζ233 | ζ2322 | ζ2318 | ζ2314 | ζ2310 | ζ236 | ζ232 | ζ2321 | ζ2317 | ζ2313 | ζ239 | ζ235 | ζ23 | ζ2320 | ζ2316 | ζ2312 | ζ238 | ζ2319 | linear of order 23 faithful |
ρ21 | 1 | ζ233 | ζ2317 | ζ2314 | ζ2311 | ζ238 | ζ235 | ζ232 | ζ2322 | ζ2319 | ζ2316 | ζ2313 | ζ2310 | ζ237 | ζ234 | ζ23 | ζ2321 | ζ2318 | ζ2315 | ζ2312 | ζ239 | ζ236 | ζ2320 | linear of order 23 faithful |
ρ22 | 1 | ζ232 | ζ2319 | ζ2317 | ζ2315 | ζ2313 | ζ2311 | ζ239 | ζ237 | ζ235 | ζ233 | ζ23 | ζ2322 | ζ2320 | ζ2318 | ζ2316 | ζ2314 | ζ2312 | ζ2310 | ζ238 | ζ236 | ζ234 | ζ2321 | linear of order 23 faithful |
ρ23 | 1 | ζ23 | ζ2321 | ζ2320 | ζ2319 | ζ2318 | ζ2317 | ζ2316 | ζ2315 | ζ2314 | ζ2313 | ζ2312 | ζ2311 | ζ2310 | ζ239 | ζ238 | ζ237 | ζ236 | ζ235 | ζ234 | ζ233 | ζ232 | ζ2322 | linear of order 23 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
G:=sub<Sym(23)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)]])
G:=TransitiveGroup(23,1);
C23 is a maximal subgroup of
D23 C23⋊C11
Matrix representation of C23 ►in GL1(𝔽47) generated by
24 |
G:=sub<GL(1,GF(47))| [24] >;
C23 in GAP, Magma, Sage, TeX
C_{23}
% in TeX
G:=Group("C23");
// GroupNames label
G:=SmallGroup(23,1);
// by ID
G=gap.SmallGroup(23,1);
# by ID
G:=PCGroup([1,-23]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^23=1>;
// generators/relations
Export
Subgroup lattice of C23 in TeX
Character table of C23 in TeX