metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D23, C23⋊C2, sometimes denoted D46 or Dih23 or Dih46, SmallGroup(46,1)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — D23 |
Generators and relations for D23
G = < a,b | a23=b2=1, bab=a-1 >
Character table of D23
class | 1 | 2 | 23A | 23B | 23C | 23D | 23E | 23F | 23G | 23H | 23I | 23J | 23K | |
size | 1 | 23 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ2316+ζ237 | ζ2322+ζ23 | ζ2314+ζ239 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2313+ζ2310 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2315+ζ238 | orthogonal faithful |
ρ4 | 2 | 0 | ζ2318+ζ235 | ζ2319+ζ234 | ζ2313+ζ2310 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2317+ζ236 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2314+ζ239 | orthogonal faithful |
ρ5 | 2 | 0 | ζ2319+ζ234 | ζ2317+ζ236 | ζ2315+ζ238 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2314+ζ239 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2321+ζ232 | orthogonal faithful |
ρ6 | 2 | 0 | ζ2321+ζ232 | ζ2320+ζ233 | ζ2319+ζ234 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2316+ζ237 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2322+ζ23 | orthogonal faithful |
ρ7 | 2 | 0 | ζ2317+ζ236 | ζ2314+ζ239 | ζ2312+ζ2311 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2321+ζ232 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2320+ζ233 | orthogonal faithful |
ρ8 | 2 | 0 | ζ2322+ζ23 | ζ2313+ζ2310 | ζ2321+ζ232 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2315+ζ238 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2312+ζ2311 | orthogonal faithful |
ρ9 | 2 | 0 | ζ2313+ζ2310 | ζ2315+ζ238 | ζ2320+ζ233 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2312+ζ2311 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2318+ζ235 | orthogonal faithful |
ρ10 | 2 | 0 | ζ2315+ζ238 | ζ2312+ζ2311 | ζ2316+ζ237 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2318+ζ235 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2319+ζ234 | orthogonal faithful |
ρ11 | 2 | 0 | ζ2320+ζ233 | ζ2316+ζ237 | ζ2317+ζ236 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2322+ζ23 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2313+ζ2310 | orthogonal faithful |
ρ12 | 2 | 0 | ζ2314+ζ239 | ζ2321+ζ232 | ζ2318+ζ235 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2320+ζ233 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2316+ζ237 | orthogonal faithful |
ρ13 | 2 | 0 | ζ2312+ζ2311 | ζ2318+ζ235 | ζ2322+ζ23 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2319+ζ234 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2317+ζ236 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)
G:=sub<Sym(23)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13)]])
G:=TransitiveGroup(23,2);
D23 is a maximal subgroup of
D69 D115 D161
D23 is a maximal quotient of Dic23 D69 D115 D161
Matrix representation of D23 ►in GL2(𝔽47) generated by
6 | 46 |
1 | 0 |
6 | 46 |
35 | 41 |
G:=sub<GL(2,GF(47))| [6,1,46,0],[6,35,46,41] >;
D23 in GAP, Magma, Sage, TeX
D_{23}
% in TeX
G:=Group("D23");
// GroupNames label
G:=SmallGroup(46,1);
// by ID
G=gap.SmallGroup(46,1);
# by ID
G:=PCGroup([2,-2,-23,177]);
// Polycyclic
G:=Group<a,b|a^23=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D23 in TeX
Character table of D23 in TeX