p-group, cyclic, elementary abelian, simple, monomial
Aliases: C29, also denoted Z29, SmallGroup(29,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C29 |
C1 — C29 |
C1 — C29 |
C1 — C29 |
Generators and relations for C29
G = < a | a29=1 >
Character table of C29
class | 1 | 29A | 29B | 29C | 29D | 29E | 29F | 29G | 29H | 29I | 29J | 29K | 29L | 29M | 29N | 29O | 29P | 29Q | 29R | 29S | 29T | 29U | 29V | 29W | 29X | 29Y | 29Z | 29AA | 29AB | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ2928 | ζ292 | ζ293 | ζ294 | ζ295 | ζ296 | ζ297 | ζ298 | ζ299 | ζ2910 | ζ2911 | ζ2912 | ζ2913 | ζ2914 | ζ2915 | ζ2916 | ζ2917 | ζ2918 | ζ2919 | ζ2920 | ζ2921 | ζ2922 | ζ2923 | ζ2924 | ζ2925 | ζ2926 | ζ2927 | ζ29 | linear of order 29 faithful |
ρ3 | 1 | ζ2927 | ζ294 | ζ296 | ζ298 | ζ2910 | ζ2912 | ζ2914 | ζ2916 | ζ2918 | ζ2920 | ζ2922 | ζ2924 | ζ2926 | ζ2928 | ζ29 | ζ293 | ζ295 | ζ297 | ζ299 | ζ2911 | ζ2913 | ζ2915 | ζ2917 | ζ2919 | ζ2921 | ζ2923 | ζ2925 | ζ292 | linear of order 29 faithful |
ρ4 | 1 | ζ2926 | ζ296 | ζ299 | ζ2912 | ζ2915 | ζ2918 | ζ2921 | ζ2924 | ζ2927 | ζ29 | ζ294 | ζ297 | ζ2910 | ζ2913 | ζ2916 | ζ2919 | ζ2922 | ζ2925 | ζ2928 | ζ292 | ζ295 | ζ298 | ζ2911 | ζ2914 | ζ2917 | ζ2920 | ζ2923 | ζ293 | linear of order 29 faithful |
ρ5 | 1 | ζ2925 | ζ298 | ζ2912 | ζ2916 | ζ2920 | ζ2924 | ζ2928 | ζ293 | ζ297 | ζ2911 | ζ2915 | ζ2919 | ζ2923 | ζ2927 | ζ292 | ζ296 | ζ2910 | ζ2914 | ζ2918 | ζ2922 | ζ2926 | ζ29 | ζ295 | ζ299 | ζ2913 | ζ2917 | ζ2921 | ζ294 | linear of order 29 faithful |
ρ6 | 1 | ζ2924 | ζ2910 | ζ2915 | ζ2920 | ζ2925 | ζ29 | ζ296 | ζ2911 | ζ2916 | ζ2921 | ζ2926 | ζ292 | ζ297 | ζ2912 | ζ2917 | ζ2922 | ζ2927 | ζ293 | ζ298 | ζ2913 | ζ2918 | ζ2923 | ζ2928 | ζ294 | ζ299 | ζ2914 | ζ2919 | ζ295 | linear of order 29 faithful |
ρ7 | 1 | ζ2923 | ζ2912 | ζ2918 | ζ2924 | ζ29 | ζ297 | ζ2913 | ζ2919 | ζ2925 | ζ292 | ζ298 | ζ2914 | ζ2920 | ζ2926 | ζ293 | ζ299 | ζ2915 | ζ2921 | ζ2927 | ζ294 | ζ2910 | ζ2916 | ζ2922 | ζ2928 | ζ295 | ζ2911 | ζ2917 | ζ296 | linear of order 29 faithful |
ρ8 | 1 | ζ2922 | ζ2914 | ζ2921 | ζ2928 | ζ296 | ζ2913 | ζ2920 | ζ2927 | ζ295 | ζ2912 | ζ2919 | ζ2926 | ζ294 | ζ2911 | ζ2918 | ζ2925 | ζ293 | ζ2910 | ζ2917 | ζ2924 | ζ292 | ζ299 | ζ2916 | ζ2923 | ζ29 | ζ298 | ζ2915 | ζ297 | linear of order 29 faithful |
ρ9 | 1 | ζ2921 | ζ2916 | ζ2924 | ζ293 | ζ2911 | ζ2919 | ζ2927 | ζ296 | ζ2914 | ζ2922 | ζ29 | ζ299 | ζ2917 | ζ2925 | ζ294 | ζ2912 | ζ2920 | ζ2928 | ζ297 | ζ2915 | ζ2923 | ζ292 | ζ2910 | ζ2918 | ζ2926 | ζ295 | ζ2913 | ζ298 | linear of order 29 faithful |
ρ10 | 1 | ζ2920 | ζ2918 | ζ2927 | ζ297 | ζ2916 | ζ2925 | ζ295 | ζ2914 | ζ2923 | ζ293 | ζ2912 | ζ2921 | ζ29 | ζ2910 | ζ2919 | ζ2928 | ζ298 | ζ2917 | ζ2926 | ζ296 | ζ2915 | ζ2924 | ζ294 | ζ2913 | ζ2922 | ζ292 | ζ2911 | ζ299 | linear of order 29 faithful |
ρ11 | 1 | ζ2919 | ζ2920 | ζ29 | ζ2911 | ζ2921 | ζ292 | ζ2912 | ζ2922 | ζ293 | ζ2913 | ζ2923 | ζ294 | ζ2914 | ζ2924 | ζ295 | ζ2915 | ζ2925 | ζ296 | ζ2916 | ζ2926 | ζ297 | ζ2917 | ζ2927 | ζ298 | ζ2918 | ζ2928 | ζ299 | ζ2910 | linear of order 29 faithful |
ρ12 | 1 | ζ2918 | ζ2922 | ζ294 | ζ2915 | ζ2926 | ζ298 | ζ2919 | ζ29 | ζ2912 | ζ2923 | ζ295 | ζ2916 | ζ2927 | ζ299 | ζ2920 | ζ292 | ζ2913 | ζ2924 | ζ296 | ζ2917 | ζ2928 | ζ2910 | ζ2921 | ζ293 | ζ2914 | ζ2925 | ζ297 | ζ2911 | linear of order 29 faithful |
ρ13 | 1 | ζ2917 | ζ2924 | ζ297 | ζ2919 | ζ292 | ζ2914 | ζ2926 | ζ299 | ζ2921 | ζ294 | ζ2916 | ζ2928 | ζ2911 | ζ2923 | ζ296 | ζ2918 | ζ29 | ζ2913 | ζ2925 | ζ298 | ζ2920 | ζ293 | ζ2915 | ζ2927 | ζ2910 | ζ2922 | ζ295 | ζ2912 | linear of order 29 faithful |
ρ14 | 1 | ζ2916 | ζ2926 | ζ2910 | ζ2923 | ζ297 | ζ2920 | ζ294 | ζ2917 | ζ29 | ζ2914 | ζ2927 | ζ2911 | ζ2924 | ζ298 | ζ2921 | ζ295 | ζ2918 | ζ292 | ζ2915 | ζ2928 | ζ2912 | ζ2925 | ζ299 | ζ2922 | ζ296 | ζ2919 | ζ293 | ζ2913 | linear of order 29 faithful |
ρ15 | 1 | ζ2915 | ζ2928 | ζ2913 | ζ2927 | ζ2912 | ζ2926 | ζ2911 | ζ2925 | ζ2910 | ζ2924 | ζ299 | ζ2923 | ζ298 | ζ2922 | ζ297 | ζ2921 | ζ296 | ζ2920 | ζ295 | ζ2919 | ζ294 | ζ2918 | ζ293 | ζ2917 | ζ292 | ζ2916 | ζ29 | ζ2914 | linear of order 29 faithful |
ρ16 | 1 | ζ2914 | ζ29 | ζ2916 | ζ292 | ζ2917 | ζ293 | ζ2918 | ζ294 | ζ2919 | ζ295 | ζ2920 | ζ296 | ζ2921 | ζ297 | ζ2922 | ζ298 | ζ2923 | ζ299 | ζ2924 | ζ2910 | ζ2925 | ζ2911 | ζ2926 | ζ2912 | ζ2927 | ζ2913 | ζ2928 | ζ2915 | linear of order 29 faithful |
ρ17 | 1 | ζ2913 | ζ293 | ζ2919 | ζ296 | ζ2922 | ζ299 | ζ2925 | ζ2912 | ζ2928 | ζ2915 | ζ292 | ζ2918 | ζ295 | ζ2921 | ζ298 | ζ2924 | ζ2911 | ζ2927 | ζ2914 | ζ29 | ζ2917 | ζ294 | ζ2920 | ζ297 | ζ2923 | ζ2910 | ζ2926 | ζ2916 | linear of order 29 faithful |
ρ18 | 1 | ζ2912 | ζ295 | ζ2922 | ζ2910 | ζ2927 | ζ2915 | ζ293 | ζ2920 | ζ298 | ζ2925 | ζ2913 | ζ29 | ζ2918 | ζ296 | ζ2923 | ζ2911 | ζ2928 | ζ2916 | ζ294 | ζ2921 | ζ299 | ζ2926 | ζ2914 | ζ292 | ζ2919 | ζ297 | ζ2924 | ζ2917 | linear of order 29 faithful |
ρ19 | 1 | ζ2911 | ζ297 | ζ2925 | ζ2914 | ζ293 | ζ2921 | ζ2910 | ζ2928 | ζ2917 | ζ296 | ζ2924 | ζ2913 | ζ292 | ζ2920 | ζ299 | ζ2927 | ζ2916 | ζ295 | ζ2923 | ζ2912 | ζ29 | ζ2919 | ζ298 | ζ2926 | ζ2915 | ζ294 | ζ2922 | ζ2918 | linear of order 29 faithful |
ρ20 | 1 | ζ2910 | ζ299 | ζ2928 | ζ2918 | ζ298 | ζ2927 | ζ2917 | ζ297 | ζ2926 | ζ2916 | ζ296 | ζ2925 | ζ2915 | ζ295 | ζ2924 | ζ2914 | ζ294 | ζ2923 | ζ2913 | ζ293 | ζ2922 | ζ2912 | ζ292 | ζ2921 | ζ2911 | ζ29 | ζ2920 | ζ2919 | linear of order 29 faithful |
ρ21 | 1 | ζ299 | ζ2911 | ζ292 | ζ2922 | ζ2913 | ζ294 | ζ2924 | ζ2915 | ζ296 | ζ2926 | ζ2917 | ζ298 | ζ2928 | ζ2919 | ζ2910 | ζ29 | ζ2921 | ζ2912 | ζ293 | ζ2923 | ζ2914 | ζ295 | ζ2925 | ζ2916 | ζ297 | ζ2927 | ζ2918 | ζ2920 | linear of order 29 faithful |
ρ22 | 1 | ζ298 | ζ2913 | ζ295 | ζ2926 | ζ2918 | ζ2910 | ζ292 | ζ2923 | ζ2915 | ζ297 | ζ2928 | ζ2920 | ζ2912 | ζ294 | ζ2925 | ζ2917 | ζ299 | ζ29 | ζ2922 | ζ2914 | ζ296 | ζ2927 | ζ2919 | ζ2911 | ζ293 | ζ2924 | ζ2916 | ζ2921 | linear of order 29 faithful |
ρ23 | 1 | ζ297 | ζ2915 | ζ298 | ζ29 | ζ2923 | ζ2916 | ζ299 | ζ292 | ζ2924 | ζ2917 | ζ2910 | ζ293 | ζ2925 | ζ2918 | ζ2911 | ζ294 | ζ2926 | ζ2919 | ζ2912 | ζ295 | ζ2927 | ζ2920 | ζ2913 | ζ296 | ζ2928 | ζ2921 | ζ2914 | ζ2922 | linear of order 29 faithful |
ρ24 | 1 | ζ296 | ζ2917 | ζ2911 | ζ295 | ζ2928 | ζ2922 | ζ2916 | ζ2910 | ζ294 | ζ2927 | ζ2921 | ζ2915 | ζ299 | ζ293 | ζ2926 | ζ2920 | ζ2914 | ζ298 | ζ292 | ζ2925 | ζ2919 | ζ2913 | ζ297 | ζ29 | ζ2924 | ζ2918 | ζ2912 | ζ2923 | linear of order 29 faithful |
ρ25 | 1 | ζ295 | ζ2919 | ζ2914 | ζ299 | ζ294 | ζ2928 | ζ2923 | ζ2918 | ζ2913 | ζ298 | ζ293 | ζ2927 | ζ2922 | ζ2917 | ζ2912 | ζ297 | ζ292 | ζ2926 | ζ2921 | ζ2916 | ζ2911 | ζ296 | ζ29 | ζ2925 | ζ2920 | ζ2915 | ζ2910 | ζ2924 | linear of order 29 faithful |
ρ26 | 1 | ζ294 | ζ2921 | ζ2917 | ζ2913 | ζ299 | ζ295 | ζ29 | ζ2926 | ζ2922 | ζ2918 | ζ2914 | ζ2910 | ζ296 | ζ292 | ζ2927 | ζ2923 | ζ2919 | ζ2915 | ζ2911 | ζ297 | ζ293 | ζ2928 | ζ2924 | ζ2920 | ζ2916 | ζ2912 | ζ298 | ζ2925 | linear of order 29 faithful |
ρ27 | 1 | ζ293 | ζ2923 | ζ2920 | ζ2917 | ζ2914 | ζ2911 | ζ298 | ζ295 | ζ292 | ζ2928 | ζ2925 | ζ2922 | ζ2919 | ζ2916 | ζ2913 | ζ2910 | ζ297 | ζ294 | ζ29 | ζ2927 | ζ2924 | ζ2921 | ζ2918 | ζ2915 | ζ2912 | ζ299 | ζ296 | ζ2926 | linear of order 29 faithful |
ρ28 | 1 | ζ292 | ζ2925 | ζ2923 | ζ2921 | ζ2919 | ζ2917 | ζ2915 | ζ2913 | ζ2911 | ζ299 | ζ297 | ζ295 | ζ293 | ζ29 | ζ2928 | ζ2926 | ζ2924 | ζ2922 | ζ2920 | ζ2918 | ζ2916 | ζ2914 | ζ2912 | ζ2910 | ζ298 | ζ296 | ζ294 | ζ2927 | linear of order 29 faithful |
ρ29 | 1 | ζ29 | ζ2927 | ζ2926 | ζ2925 | ζ2924 | ζ2923 | ζ2922 | ζ2921 | ζ2920 | ζ2919 | ζ2918 | ζ2917 | ζ2916 | ζ2915 | ζ2914 | ζ2913 | ζ2912 | ζ2911 | ζ2910 | ζ299 | ζ298 | ζ297 | ζ296 | ζ295 | ζ294 | ζ293 | ζ292 | ζ2928 | linear of order 29 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)
G:=sub<Sym(29)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)]])
G:=TransitiveGroup(29,1);
C29 is a maximal subgroup of
D29 C29⋊C7
Matrix representation of C29 ►in GL1(𝔽59) generated by
9 |
G:=sub<GL(1,GF(59))| [9] >;
C29 in GAP, Magma, Sage, TeX
C_{29}
% in TeX
G:=Group("C29");
// GroupNames label
G:=SmallGroup(29,1);
// by ID
G=gap.SmallGroup(29,1);
# by ID
G:=PCGroup([1,-29]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^29=1>;
// generators/relations
Export
Subgroup lattice of C29 in TeX
Character table of C29 in TeX