metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D29, C29⋊C2, sometimes denoted D58 or Dih29 or Dih58, SmallGroup(58,1)
Series: Derived ►Chief ►Lower central ►Upper central
C29 — D29 |
Generators and relations for D29
G = < a,b | a29=b2=1, bab=a-1 >
Character table of D29
class | 1 | 2 | 29A | 29B | 29C | 29D | 29E | 29F | 29G | 29H | 29I | 29J | 29K | 29L | 29M | 29N | |
size | 1 | 29 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ2920+ζ299 | ζ2928+ζ29 | ζ2918+ζ2911 | ζ2921+ζ298 | ζ2927+ζ292 | ζ2917+ζ2912 | ζ2922+ζ297 | ζ2926+ζ293 | ζ2916+ζ2913 | ζ2923+ζ296 | ζ2925+ζ294 | ζ2915+ζ2914 | ζ2924+ζ295 | ζ2919+ζ2910 | orthogonal faithful |
ρ4 | 2 | 0 | ζ2925+ζ294 | ζ2923+ζ296 | ζ2921+ζ298 | ζ2919+ζ2910 | ζ2917+ζ2912 | ζ2915+ζ2914 | ζ2916+ζ2913 | ζ2918+ζ2911 | ζ2920+ζ299 | ζ2922+ζ297 | ζ2924+ζ295 | ζ2926+ζ293 | ζ2928+ζ29 | ζ2927+ζ292 | orthogonal faithful |
ρ5 | 2 | 0 | ζ2926+ζ293 | ζ2919+ζ2910 | ζ2923+ζ296 | ζ2922+ζ297 | ζ2920+ζ299 | ζ2925+ζ294 | ζ2917+ζ2912 | ζ2928+ζ29 | ζ2915+ζ2914 | ζ2927+ζ292 | ζ2918+ζ2911 | ζ2924+ζ295 | ζ2921+ζ298 | ζ2916+ζ2913 | orthogonal faithful |
ρ6 | 2 | 0 | ζ2928+ζ29 | ζ2916+ζ2913 | ζ2927+ζ292 | ζ2917+ζ2912 | ζ2926+ζ293 | ζ2918+ζ2911 | ζ2925+ζ294 | ζ2919+ζ2910 | ζ2924+ζ295 | ζ2920+ζ299 | ζ2923+ζ296 | ζ2921+ζ298 | ζ2922+ζ297 | ζ2915+ζ2914 | orthogonal faithful |
ρ7 | 2 | 0 | ζ2916+ζ2913 | ζ2924+ζ295 | ζ2926+ζ293 | ζ2918+ζ2911 | ζ2919+ζ2910 | ζ2927+ζ292 | ζ2923+ζ296 | ζ2915+ζ2914 | ζ2922+ζ297 | ζ2928+ζ29 | ζ2920+ζ299 | ζ2917+ζ2912 | ζ2925+ζ294 | ζ2921+ζ298 | orthogonal faithful |
ρ8 | 2 | 0 | ζ2922+ζ297 | ζ2925+ζ294 | ζ2915+ζ2914 | ζ2926+ζ293 | ζ2921+ζ298 | ζ2919+ζ2910 | ζ2928+ζ29 | ζ2917+ζ2912 | ζ2923+ζ296 | ζ2924+ζ295 | ζ2916+ζ2913 | ζ2927+ζ292 | ζ2920+ζ299 | ζ2918+ζ2911 | orthogonal faithful |
ρ9 | 2 | 0 | ζ2917+ζ2912 | ζ2918+ζ2911 | ζ2924+ζ295 | ζ2928+ζ29 | ζ2922+ζ297 | ζ2916+ζ2913 | ζ2919+ζ2910 | ζ2925+ζ294 | ζ2927+ζ292 | ζ2921+ζ298 | ζ2915+ζ2914 | ζ2920+ζ299 | ζ2926+ζ293 | ζ2923+ζ296 | orthogonal faithful |
ρ10 | 2 | 0 | ζ2923+ζ296 | ζ2920+ζ299 | ζ2917+ζ2912 | ζ2915+ζ2914 | ζ2918+ζ2911 | ζ2921+ζ298 | ζ2924+ζ295 | ζ2927+ζ292 | ζ2928+ζ29 | ζ2925+ζ294 | ζ2922+ζ297 | ζ2919+ζ2910 | ζ2916+ζ2913 | ζ2926+ζ293 | orthogonal faithful |
ρ11 | 2 | 0 | ζ2918+ζ2911 | ζ2927+ζ292 | ζ2922+ζ297 | ζ2916+ζ2913 | ζ2925+ζ294 | ζ2924+ζ295 | ζ2915+ζ2914 | ζ2923+ζ296 | ζ2926+ζ293 | ζ2917+ζ2912 | ζ2921+ζ298 | ζ2928+ζ29 | ζ2919+ζ2910 | ζ2920+ζ299 | orthogonal faithful |
ρ12 | 2 | 0 | ζ2924+ζ295 | ζ2922+ζ297 | ζ2919+ζ2910 | ζ2927+ζ292 | ζ2915+ζ2914 | ζ2926+ζ293 | ζ2920+ζ299 | ζ2921+ζ298 | ζ2925+ζ294 | ζ2916+ζ2913 | ζ2928+ζ29 | ζ2918+ζ2911 | ζ2923+ζ296 | ζ2917+ζ2912 | orthogonal faithful |
ρ13 | 2 | 0 | ζ2921+ζ298 | ζ2917+ζ2912 | ζ2916+ζ2913 | ζ2920+ζ299 | ζ2924+ζ295 | ζ2928+ζ29 | ζ2926+ζ293 | ζ2922+ζ297 | ζ2918+ζ2911 | ζ2915+ζ2914 | ζ2919+ζ2910 | ζ2923+ζ296 | ζ2927+ζ292 | ζ2925+ζ294 | orthogonal faithful |
ρ14 | 2 | 0 | ζ2915+ζ2914 | ζ2921+ζ298 | ζ2928+ζ29 | ζ2923+ζ296 | ζ2916+ζ2913 | ζ2920+ζ299 | ζ2927+ζ292 | ζ2924+ζ295 | ζ2917+ζ2912 | ζ2919+ζ2910 | ζ2926+ζ293 | ζ2925+ζ294 | ζ2918+ζ2911 | ζ2922+ζ297 | orthogonal faithful |
ρ15 | 2 | 0 | ζ2919+ζ2910 | ζ2915+ζ2914 | ζ2920+ζ299 | ζ2925+ζ294 | ζ2928+ζ29 | ζ2923+ζ296 | ζ2918+ζ2911 | ζ2916+ζ2913 | ζ2921+ζ298 | ζ2926+ζ293 | ζ2927+ζ292 | ζ2922+ζ297 | ζ2917+ζ2912 | ζ2924+ζ295 | orthogonal faithful |
ρ16 | 2 | 0 | ζ2927+ζ292 | ζ2926+ζ293 | ζ2925+ζ294 | ζ2924+ζ295 | ζ2923+ζ296 | ζ2922+ζ297 | ζ2921+ζ298 | ζ2920+ζ299 | ζ2919+ζ2910 | ζ2918+ζ2911 | ζ2917+ζ2912 | ζ2916+ζ2913 | ζ2915+ζ2914 | ζ2928+ζ29 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)
G:=sub<Sym(29)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16)]])
G:=TransitiveGroup(29,2);
D29 is a maximal subgroup of
C29⋊C4 D87 D145 C29⋊C14 D203
D29 is a maximal quotient of Dic29 D87 D145 D203
Matrix representation of D29 ►in GL2(𝔽59) generated by
14 | 58 |
1 | 0 |
14 | 58 |
18 | 45 |
G:=sub<GL(2,GF(59))| [14,1,58,0],[14,18,58,45] >;
D29 in GAP, Magma, Sage, TeX
D_{29}
% in TeX
G:=Group("D29");
// GroupNames label
G:=SmallGroup(58,1);
// by ID
G=gap.SmallGroup(58,1);
# by ID
G:=PCGroup([2,-2,-29,225]);
// Polycyclic
G:=Group<a,b|a^29=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D29 in TeX
Character table of D29 in TeX