p-group, cyclic, abelian, monomial
Aliases: C49, also denoted Z49, SmallGroup(49,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C49 |
C1 — C49 |
C1 — C49 |
Generators and relations for C49
G = < a | a49=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49)
G:=sub<Sym(49)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)]])
C49 is a maximal subgroup of
D49 C49⋊C3 C343 7- 1+2 C7.F8
C49 is a maximal quotient of C343 C7.F8
49 conjugacy classes
class | 1 | 7A | ··· | 7F | 49A | ··· | 49AP |
order | 1 | 7 | ··· | 7 | 49 | ··· | 49 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
49 irreducible representations
dim | 1 | 1 | 1 |
type | + | ||
image | C1 | C7 | C49 |
kernel | C49 | C7 | C1 |
# reps | 1 | 6 | 42 |
Matrix representation of C49 ►in GL1(𝔽197) generated by
193 |
G:=sub<GL(1,GF(197))| [193] >;
C49 in GAP, Magma, Sage, TeX
C_{49}
% in TeX
G:=Group("C49");
// GroupNames label
G:=SmallGroup(49,1);
// by ID
G=gap.SmallGroup(49,1);
# by ID
G:=PCGroup([2,-7,-7,14]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^49=1>;
// generators/relations
Export