metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D49, C49⋊C2, C7.D7, sometimes denoted D98 or Dih49 or Dih98, SmallGroup(98,1)
Series: Derived ►Chief ►Lower central ►Upper central
C49 — D49 |
Generators and relations for D49
G = < a,b | a49=b2=1, bab=a-1 >
Character table of D49
class | 1 | 2 | 7A | 7B | 7C | 49A | 49B | 49C | 49D | 49E | 49F | 49G | 49H | 49I | 49J | 49K | 49L | 49M | 49N | 49O | 49P | 49Q | 49R | 49S | 49T | 49U | |
size | 1 | 49 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ4 | 2 | 0 | 2 | 2 | 2 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ5 | 2 | 0 | 2 | 2 | 2 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ6 | 2 | 0 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4927+ζ4922 | ζ4929+ζ4920 | ζ4936+ζ4913 | ζ4943+ζ496 | ζ4948+ζ49 | ζ4941+ζ498 | ζ4930+ζ4919 | ζ4937+ζ4912 | ζ4944+ζ495 | ζ4947+ζ492 | ζ4940+ζ499 | ζ4933+ζ4916 | ζ4926+ζ4923 | ζ4945+ζ494 | ζ4946+ζ493 | ζ4939+ζ4910 | ζ4932+ζ4917 | ζ4925+ζ4924 | ζ4931+ζ4918 | ζ4938+ζ4911 | ζ4934+ζ4915 | orthogonal faithful |
ρ7 | 2 | 0 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4946+ζ493 | ζ4925+ζ4924 | ζ4945+ζ494 | ζ4932+ζ4917 | ζ4938+ζ4911 | ζ4939+ζ4910 | ζ4936+ζ4913 | ζ4934+ζ4915 | ζ4943+ζ496 | ζ4927+ζ4922 | ζ4948+ζ49 | ζ4929+ζ4920 | ζ4941+ζ498 | ζ4944+ζ495 | ζ4933+ζ4916 | ζ4937+ζ4912 | ζ4940+ζ499 | ζ4930+ζ4919 | ζ4947+ζ492 | ζ4926+ζ4923 | ζ4931+ζ4918 | orthogonal faithful |
ρ8 | 2 | 0 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4945+ζ494 | ζ4932+ζ4917 | ζ4938+ζ4911 | ζ4939+ζ4910 | ζ4931+ζ4918 | ζ4946+ζ493 | ζ4948+ζ49 | ζ4929+ζ4920 | ζ4941+ζ498 | ζ4936+ζ4913 | ζ4934+ζ4915 | ζ4943+ζ496 | ζ4927+ζ4922 | ζ4926+ζ4923 | ζ4944+ζ495 | ζ4933+ζ4916 | ζ4937+ζ4912 | ζ4940+ζ499 | ζ4930+ζ4919 | ζ4947+ζ492 | ζ4925+ζ4924 | orthogonal faithful |
ρ9 | 2 | 0 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4940+ζ499 | ζ4926+ζ4923 | ζ4937+ζ4912 | ζ4947+ζ492 | ζ4933+ζ4916 | ζ4930+ζ4919 | ζ4939+ζ4910 | ζ4945+ζ494 | ζ4931+ζ4918 | ζ4932+ζ4917 | ζ4946+ζ493 | ζ4938+ζ4911 | ζ4925+ζ4924 | ζ4934+ζ4915 | ζ4948+ζ49 | ζ4936+ζ4913 | ζ4927+ζ4922 | ζ4941+ζ498 | ζ4943+ζ496 | ζ4929+ζ4920 | ζ4944+ζ495 | orthogonal faithful |
ρ10 | 2 | 0 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4943+ζ496 | ζ4948+ζ49 | ζ4941+ζ498 | ζ4934+ζ4915 | ζ4927+ζ4922 | ζ4929+ζ4920 | ζ4926+ζ4923 | ζ4930+ζ4919 | ζ4937+ζ4912 | ζ4944+ζ495 | ζ4947+ζ492 | ζ4940+ζ499 | ζ4933+ζ4916 | ζ4939+ζ4910 | ζ4932+ζ4917 | ζ4925+ζ4924 | ζ4931+ζ4918 | ζ4938+ζ4911 | ζ4945+ζ494 | ζ4946+ζ493 | ζ4936+ζ4913 | orthogonal faithful |
ρ11 | 2 | 0 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4925+ζ4924 | ζ4945+ζ494 | ζ4932+ζ4917 | ζ4938+ζ4911 | ζ4939+ζ4910 | ζ4931+ζ4918 | ζ4943+ζ496 | ζ4927+ζ4922 | ζ4948+ζ49 | ζ4929+ζ4920 | ζ4941+ζ498 | ζ4936+ζ4913 | ζ4934+ζ4915 | ζ4940+ζ499 | ζ4930+ζ4919 | ζ4947+ζ492 | ζ4926+ζ4923 | ζ4944+ζ495 | ζ4933+ζ4916 | ζ4937+ζ4912 | ζ4946+ζ493 | orthogonal faithful |
ρ12 | 2 | 0 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4948+ζ49 | ζ4941+ζ498 | ζ4934+ζ4915 | ζ4927+ζ4922 | ζ4929+ζ4920 | ζ4936+ζ4913 | ζ4937+ζ4912 | ζ4944+ζ495 | ζ4947+ζ492 | ζ4940+ζ499 | ζ4933+ζ4916 | ζ4926+ζ4923 | ζ4930+ζ4919 | ζ4931+ζ4918 | ζ4938+ζ4911 | ζ4945+ζ494 | ζ4946+ζ493 | ζ4939+ζ4910 | ζ4932+ζ4917 | ζ4925+ζ4924 | ζ4943+ζ496 | orthogonal faithful |
ρ13 | 2 | 0 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4933+ζ4916 | ζ4930+ζ4919 | ζ4944+ζ495 | ζ4940+ζ499 | ζ4926+ζ4923 | ζ4937+ζ4912 | ζ4945+ζ494 | ζ4931+ζ4918 | ζ4932+ζ4917 | ζ4946+ζ493 | ζ4938+ζ4911 | ζ4925+ζ4924 | ζ4939+ζ4910 | ζ4943+ζ496 | ζ4929+ζ4920 | ζ4934+ζ4915 | ζ4948+ζ49 | ζ4936+ζ4913 | ζ4927+ζ4922 | ζ4941+ζ498 | ζ4947+ζ492 | orthogonal faithful |
ρ14 | 2 | 0 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4929+ζ4920 | ζ4936+ζ4913 | ζ4943+ζ496 | ζ4948+ζ49 | ζ4941+ζ498 | ζ4934+ζ4915 | ζ4944+ζ495 | ζ4947+ζ492 | ζ4940+ζ499 | ζ4933+ζ4916 | ζ4926+ζ4923 | ζ4930+ζ4919 | ζ4937+ζ4912 | ζ4932+ζ4917 | ζ4925+ζ4924 | ζ4931+ζ4918 | ζ4938+ζ4911 | ζ4945+ζ494 | ζ4946+ζ493 | ζ4939+ζ4910 | ζ4927+ζ4922 | orthogonal faithful |
ρ15 | 2 | 0 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4930+ζ4919 | ζ4944+ζ495 | ζ4940+ζ499 | ζ4926+ζ4923 | ζ4937+ζ4912 | ζ4947+ζ492 | ζ4932+ζ4917 | ζ4946+ζ493 | ζ4938+ζ4911 | ζ4925+ζ4924 | ζ4939+ζ4910 | ζ4945+ζ494 | ζ4931+ζ4918 | ζ4948+ζ49 | ζ4936+ζ4913 | ζ4927+ζ4922 | ζ4941+ζ498 | ζ4943+ζ496 | ζ4929+ζ4920 | ζ4934+ζ4915 | ζ4933+ζ4916 | orthogonal faithful |
ρ16 | 2 | 0 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4931+ζ4918 | ζ4946+ζ493 | ζ4925+ζ4924 | ζ4945+ζ494 | ζ4932+ζ4917 | ζ4938+ζ4911 | ζ4929+ζ4920 | ζ4941+ζ498 | ζ4936+ζ4913 | ζ4934+ζ4915 | ζ4943+ζ496 | ζ4927+ζ4922 | ζ4948+ζ49 | ζ4930+ζ4919 | ζ4947+ζ492 | ζ4926+ζ4923 | ζ4944+ζ495 | ζ4933+ζ4916 | ζ4937+ζ4912 | ζ4940+ζ499 | ζ4939+ζ4910 | orthogonal faithful |
ρ17 | 2 | 0 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4932+ζ4917 | ζ4938+ζ4911 | ζ4939+ζ4910 | ζ4931+ζ4918 | ζ4946+ζ493 | ζ4925+ζ4924 | ζ4941+ζ498 | ζ4936+ζ4913 | ζ4934+ζ4915 | ζ4943+ζ496 | ζ4927+ζ4922 | ζ4948+ζ49 | ζ4929+ζ4920 | ζ4937+ζ4912 | ζ4940+ζ499 | ζ4930+ζ4919 | ζ4947+ζ492 | ζ4926+ζ4923 | ζ4944+ζ495 | ζ4933+ζ4916 | ζ4945+ζ494 | orthogonal faithful |
ρ18 | 2 | 0 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4947+ζ492 | ζ4933+ζ4916 | ζ4930+ζ4919 | ζ4944+ζ495 | ζ4940+ζ499 | ζ4926+ζ4923 | ζ4925+ζ4924 | ζ4939+ζ4910 | ζ4945+ζ494 | ζ4931+ζ4918 | ζ4932+ζ4917 | ζ4946+ζ493 | ζ4938+ζ4911 | ζ4936+ζ4913 | ζ4927+ζ4922 | ζ4941+ζ498 | ζ4943+ζ496 | ζ4929+ζ4920 | ζ4934+ζ4915 | ζ4948+ζ49 | ζ4937+ζ4912 | orthogonal faithful |
ρ19 | 2 | 0 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4937+ζ4912 | ζ4947+ζ492 | ζ4933+ζ4916 | ζ4930+ζ4919 | ζ4944+ζ495 | ζ4940+ζ499 | ζ4946+ζ493 | ζ4938+ζ4911 | ζ4925+ζ4924 | ζ4939+ζ4910 | ζ4945+ζ494 | ζ4931+ζ4918 | ζ4932+ζ4917 | ζ4929+ζ4920 | ζ4934+ζ4915 | ζ4948+ζ49 | ζ4936+ζ4913 | ζ4927+ζ4922 | ζ4941+ζ498 | ζ4943+ζ496 | ζ4926+ζ4923 | orthogonal faithful |
ρ20 | 2 | 0 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4926+ζ4923 | ζ4937+ζ4912 | ζ4947+ζ492 | ζ4933+ζ4916 | ζ4930+ζ4919 | ζ4944+ζ495 | ζ4931+ζ4918 | ζ4932+ζ4917 | ζ4946+ζ493 | ζ4938+ζ4911 | ζ4925+ζ4924 | ζ4939+ζ4910 | ζ4945+ζ494 | ζ4927+ζ4922 | ζ4941+ζ498 | ζ4943+ζ496 | ζ4929+ζ4920 | ζ4934+ζ4915 | ζ4948+ζ49 | ζ4936+ζ4913 | ζ4940+ζ499 | orthogonal faithful |
ρ21 | 2 | 0 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4934+ζ4915 | ζ4927+ζ4922 | ζ4929+ζ4920 | ζ4936+ζ4913 | ζ4943+ζ496 | ζ4948+ζ49 | ζ4933+ζ4916 | ζ4926+ζ4923 | ζ4930+ζ4919 | ζ4937+ζ4912 | ζ4944+ζ495 | ζ4947+ζ492 | ζ4940+ζ499 | ζ4925+ζ4924 | ζ4931+ζ4918 | ζ4938+ζ4911 | ζ4945+ζ494 | ζ4946+ζ493 | ζ4939+ζ4910 | ζ4932+ζ4917 | ζ4941+ζ498 | orthogonal faithful |
ρ22 | 2 | 0 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4939+ζ4910 | ζ4931+ζ4918 | ζ4946+ζ493 | ζ4925+ζ4924 | ζ4945+ζ494 | ζ4932+ζ4917 | ζ4927+ζ4922 | ζ4948+ζ49 | ζ4929+ζ4920 | ζ4941+ζ498 | ζ4936+ζ4913 | ζ4934+ζ4915 | ζ4943+ζ496 | ζ4933+ζ4916 | ζ4937+ζ4912 | ζ4940+ζ499 | ζ4930+ζ4919 | ζ4947+ζ492 | ζ4926+ζ4923 | ζ4944+ζ495 | ζ4938+ζ4911 | orthogonal faithful |
ρ23 | 2 | 0 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4944+ζ495 | ζ4940+ζ499 | ζ4926+ζ4923 | ζ4937+ζ4912 | ζ4947+ζ492 | ζ4933+ζ4916 | ζ4938+ζ4911 | ζ4925+ζ4924 | ζ4939+ζ4910 | ζ4945+ζ494 | ζ4931+ζ4918 | ζ4932+ζ4917 | ζ4946+ζ493 | ζ4941+ζ498 | ζ4943+ζ496 | ζ4929+ζ4920 | ζ4934+ζ4915 | ζ4948+ζ49 | ζ4936+ζ4913 | ζ4927+ζ4922 | ζ4930+ζ4919 | orthogonal faithful |
ρ24 | 2 | 0 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4941+ζ498 | ζ4934+ζ4915 | ζ4927+ζ4922 | ζ4929+ζ4920 | ζ4936+ζ4913 | ζ4943+ζ496 | ζ4947+ζ492 | ζ4940+ζ499 | ζ4933+ζ4916 | ζ4926+ζ4923 | ζ4930+ζ4919 | ζ4937+ζ4912 | ζ4944+ζ495 | ζ4946+ζ493 | ζ4939+ζ4910 | ζ4932+ζ4917 | ζ4925+ζ4924 | ζ4931+ζ4918 | ζ4938+ζ4911 | ζ4945+ζ494 | ζ4948+ζ49 | orthogonal faithful |
ρ25 | 2 | 0 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4942+ζ497 | ζ4936+ζ4913 | ζ4943+ζ496 | ζ4948+ζ49 | ζ4941+ζ498 | ζ4934+ζ4915 | ζ4927+ζ4922 | ζ4940+ζ499 | ζ4933+ζ4916 | ζ4926+ζ4923 | ζ4930+ζ4919 | ζ4937+ζ4912 | ζ4944+ζ495 | ζ4947+ζ492 | ζ4938+ζ4911 | ζ4945+ζ494 | ζ4946+ζ493 | ζ4939+ζ4910 | ζ4932+ζ4917 | ζ4925+ζ4924 | ζ4931+ζ4918 | ζ4929+ζ4920 | orthogonal faithful |
ρ26 | 2 | 0 | ζ4942+ζ497 | ζ4935+ζ4914 | ζ4928+ζ4921 | ζ4938+ζ4911 | ζ4939+ζ4910 | ζ4931+ζ4918 | ζ4946+ζ493 | ζ4925+ζ4924 | ζ4945+ζ494 | ζ4934+ζ4915 | ζ4943+ζ496 | ζ4927+ζ4922 | ζ4948+ζ49 | ζ4929+ζ4920 | ζ4941+ζ498 | ζ4936+ζ4913 | ζ4947+ζ492 | ζ4926+ζ4923 | ζ4944+ζ495 | ζ4933+ζ4916 | ζ4937+ζ4912 | ζ4940+ζ499 | ζ4930+ζ4919 | ζ4932+ζ4917 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49)
(1 49)(2 48)(3 47)(4 46)(5 45)(6 44)(7 43)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 28)(23 27)(24 26)
G:=sub<Sym(49)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)], [(1,49),(2,48),(3,47),(4,46),(5,45),(6,44),(7,43),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,28),(23,27),(24,26)]])
D49 is a maximal subgroup of
C49⋊C6 D147 D245
D49 is a maximal quotient of Dic49 D147 D245
Matrix representation of D49 ►in GL2(𝔽197) generated by
126 | 17 |
180 | 54 |
109 | 106 |
189 | 88 |
G:=sub<GL(2,GF(197))| [126,180,17,54],[109,189,106,88] >;
D49 in GAP, Magma, Sage, TeX
D_{49}
% in TeX
G:=Group("D49");
// GroupNames label
G:=SmallGroup(98,1);
// by ID
G=gap.SmallGroup(98,1);
# by ID
G:=PCGroup([3,-2,-7,-7,577,46,758]);
// Polycyclic
G:=Group<a,b|a^49=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D49 in TeX
Character table of D49 in TeX