Copied to
clipboard

G = C59order 59

Cyclic group

p-group, cyclic, elementary abelian, simple, monomial

Aliases: C59, also denoted Z59, SmallGroup(59,1)

Series: Derived Chief Lower central Upper central Jennings

C1 — C59
C1 — C59
C1 — C59
C1 — C59
C1 — C59

Generators and relations for C59
 G = < a | a59=1 >


Smallest permutation representation of C59
Regular action on 59 points
Generators in S59
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59)

G:=sub<Sym(59)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59)])

59 conjugacy classes

class 1 59A···59BF
order159···59
size11···1

59 irreducible representations

dim11
type+
imageC1C59
kernelC59C1
# reps158

Matrix representation of C59 in GL1(𝔽709) generated by

283
G:=sub<GL(1,GF(709))| [283] >;

C59 in GAP, Magma, Sage, TeX

C_{59}
% in TeX

G:=Group("C59");
// GroupNames label

G:=SmallGroup(59,1);
// by ID

G=gap.SmallGroup(59,1);
# by ID

G:=PCGroup([1,-59]:ExponentLimit:=1);
// Polycyclic

G:=Group<a|a^59=1>;
// generators/relations

׿
×
𝔽