direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5×Dic3, C3⋊C20, C15⋊5C4, C6.C10, C30.3C2, C10.2S3, C2.(C5×S3), SmallGroup(60,1)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C5×Dic3 |
Generators and relations for C5×Dic3
G = < a,b,c | a5=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C5×Dic3
class | 1 | 2 | 3 | 4A | 4B | 5A | 5B | 5C | 5D | 6 | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 30A | 30B | 30C | 30D | |
size | 1 | 1 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | -i | i | -i | i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | 1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | i | -i | i | -i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 1 | 1 | 1 | -1 | -1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ53 | ζ52 | -ζ52 | -ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ52 | -ζ53 | ζ54 | ζ52 | ζ5 | ζ53 | linear of order 10 |
ρ6 | 1 | 1 | 1 | -1 | -1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ5 | ζ54 | -ζ54 | -ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ54 | -ζ5 | ζ53 | ζ54 | ζ52 | ζ5 | linear of order 10 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | ζ52 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | ζ5 | linear of order 5 |
ρ9 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | ζ54 | linear of order 5 |
ρ10 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | ζ53 | linear of order 5 |
ρ11 | 1 | 1 | 1 | -1 | -1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ52 | ζ53 | -ζ53 | -ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ53 | -ζ52 | ζ5 | ζ53 | ζ54 | ζ52 | linear of order 10 |
ρ12 | 1 | 1 | 1 | -1 | -1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ54 | ζ5 | -ζ5 | -ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ5 | -ζ54 | ζ52 | ζ5 | ζ53 | ζ54 | linear of order 10 |
ρ13 | 1 | -1 | 1 | -i | i | ζ52 | ζ54 | ζ5 | ζ53 | -1 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ5 | ζ54 | ζ52 | ζ53 | ζ43ζ53 | ζ43ζ52 | ζ4ζ54 | ζ43ζ54 | ζ4ζ5 | ζ43ζ5 | ζ4ζ53 | ζ4ζ52 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | linear of order 20 |
ρ14 | 1 | -1 | 1 | i | -i | ζ5 | ζ52 | ζ53 | ζ54 | -1 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ53 | ζ52 | ζ5 | ζ54 | ζ4ζ54 | ζ4ζ5 | ζ43ζ52 | ζ4ζ52 | ζ43ζ53 | ζ4ζ53 | ζ43ζ54 | ζ43ζ5 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | linear of order 20 |
ρ15 | 1 | -1 | 1 | -i | i | ζ53 | ζ5 | ζ54 | ζ52 | -1 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ54 | ζ5 | ζ53 | ζ52 | ζ43ζ52 | ζ43ζ53 | ζ4ζ5 | ζ43ζ5 | ζ4ζ54 | ζ43ζ54 | ζ4ζ52 | ζ4ζ53 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | linear of order 20 |
ρ16 | 1 | -1 | 1 | -i | i | ζ54 | ζ53 | ζ52 | ζ5 | -1 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ52 | ζ53 | ζ54 | ζ5 | ζ43ζ5 | ζ43ζ54 | ζ4ζ53 | ζ43ζ53 | ζ4ζ52 | ζ43ζ52 | ζ4ζ5 | ζ4ζ54 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | linear of order 20 |
ρ17 | 1 | -1 | 1 | i | -i | ζ52 | ζ54 | ζ5 | ζ53 | -1 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ5 | ζ54 | ζ52 | ζ53 | ζ4ζ53 | ζ4ζ52 | ζ43ζ54 | ζ4ζ54 | ζ43ζ5 | ζ4ζ5 | ζ43ζ53 | ζ43ζ52 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | linear of order 20 |
ρ18 | 1 | -1 | 1 | i | -i | ζ53 | ζ5 | ζ54 | ζ52 | -1 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ54 | ζ5 | ζ53 | ζ52 | ζ4ζ52 | ζ4ζ53 | ζ43ζ5 | ζ4ζ5 | ζ43ζ54 | ζ4ζ54 | ζ43ζ52 | ζ43ζ53 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | linear of order 20 |
ρ19 | 1 | -1 | 1 | -i | i | ζ5 | ζ52 | ζ53 | ζ54 | -1 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ53 | ζ52 | ζ5 | ζ54 | ζ43ζ54 | ζ43ζ5 | ζ4ζ52 | ζ43ζ52 | ζ4ζ53 | ζ43ζ53 | ζ4ζ54 | ζ4ζ5 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | linear of order 20 |
ρ20 | 1 | -1 | 1 | i | -i | ζ54 | ζ53 | ζ52 | ζ5 | -1 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ52 | ζ53 | ζ54 | ζ5 | ζ4ζ5 | ζ4ζ54 | ζ43ζ53 | ζ4ζ53 | ζ43ζ52 | ζ4ζ52 | ζ43ζ5 | ζ43ζ54 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | linear of order 20 |
ρ21 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ22 | 2 | -2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ23 | 2 | -2 | -1 | 0 | 0 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | 1 | -2ζ5 | -2ζ54 | -2ζ53 | -2ζ52 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ5 | ζ53 | ζ54 | ζ52 | complex faithful |
ρ24 | 2 | -2 | -1 | 0 | 0 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | 1 | -2ζ54 | -2ζ5 | -2ζ52 | -2ζ53 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54 | ζ52 | ζ5 | ζ53 | complex faithful |
ρ25 | 2 | 2 | -1 | 0 | 0 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | -1 | 2ζ54 | 2ζ5 | 2ζ52 | 2ζ53 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | complex lifted from C5×S3 |
ρ26 | 2 | -2 | -1 | 0 | 0 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | 1 | -2ζ52 | -2ζ53 | -2ζ5 | -2ζ54 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ52 | ζ5 | ζ53 | ζ54 | complex faithful |
ρ27 | 2 | -2 | -1 | 0 | 0 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | 1 | -2ζ53 | -2ζ52 | -2ζ54 | -2ζ5 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53 | ζ54 | ζ52 | ζ5 | complex faithful |
ρ28 | 2 | 2 | -1 | 0 | 0 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | -1 | 2ζ53 | 2ζ52 | 2ζ54 | 2ζ5 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | complex lifted from C5×S3 |
ρ29 | 2 | 2 | -1 | 0 | 0 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | -1 | 2ζ5 | 2ζ54 | 2ζ53 | 2ζ52 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | complex lifted from C5×S3 |
ρ30 | 2 | 2 | -1 | 0 | 0 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | -1 | 2ζ52 | 2ζ53 | 2ζ5 | 2ζ54 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | complex lifted from C5×S3 |
(1 29 23 17 11)(2 30 24 18 12)(3 25 19 13 7)(4 26 20 14 8)(5 27 21 15 9)(6 28 22 16 10)(31 55 49 43 37)(32 56 50 44 38)(33 57 51 45 39)(34 58 52 46 40)(35 59 53 47 41)(36 60 54 48 42)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 34 4 31)(2 33 5 36)(3 32 6 35)(7 38 10 41)(8 37 11 40)(9 42 12 39)(13 44 16 47)(14 43 17 46)(15 48 18 45)(19 50 22 53)(20 49 23 52)(21 54 24 51)(25 56 28 59)(26 55 29 58)(27 60 30 57)
G:=sub<Sym(60)| (1,29,23,17,11)(2,30,24,18,12)(3,25,19,13,7)(4,26,20,14,8)(5,27,21,15,9)(6,28,22,16,10)(31,55,49,43,37)(32,56,50,44,38)(33,57,51,45,39)(34,58,52,46,40)(35,59,53,47,41)(36,60,54,48,42), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,34,4,31)(2,33,5,36)(3,32,6,35)(7,38,10,41)(8,37,11,40)(9,42,12,39)(13,44,16,47)(14,43,17,46)(15,48,18,45)(19,50,22,53)(20,49,23,52)(21,54,24,51)(25,56,28,59)(26,55,29,58)(27,60,30,57)>;
G:=Group( (1,29,23,17,11)(2,30,24,18,12)(3,25,19,13,7)(4,26,20,14,8)(5,27,21,15,9)(6,28,22,16,10)(31,55,49,43,37)(32,56,50,44,38)(33,57,51,45,39)(34,58,52,46,40)(35,59,53,47,41)(36,60,54,48,42), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,34,4,31)(2,33,5,36)(3,32,6,35)(7,38,10,41)(8,37,11,40)(9,42,12,39)(13,44,16,47)(14,43,17,46)(15,48,18,45)(19,50,22,53)(20,49,23,52)(21,54,24,51)(25,56,28,59)(26,55,29,58)(27,60,30,57) );
G=PermutationGroup([[(1,29,23,17,11),(2,30,24,18,12),(3,25,19,13,7),(4,26,20,14,8),(5,27,21,15,9),(6,28,22,16,10),(31,55,49,43,37),(32,56,50,44,38),(33,57,51,45,39),(34,58,52,46,40),(35,59,53,47,41),(36,60,54,48,42)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,34,4,31),(2,33,5,36),(3,32,6,35),(7,38,10,41),(8,37,11,40),(9,42,12,39),(13,44,16,47),(14,43,17,46),(15,48,18,45),(19,50,22,53),(20,49,23,52),(21,54,24,51),(25,56,28,59),(26,55,29,58),(27,60,30,57)]])
C5×Dic3 is a maximal subgroup of
D30.C2 C3⋊D20 C15⋊Q8 S3×C20
Matrix representation of C5×Dic3 ►in GL2(𝔽11) generated by
5 | 0 |
0 | 5 |
1 | 5 |
2 | 0 |
7 | 8 |
2 | 4 |
G:=sub<GL(2,GF(11))| [5,0,0,5],[1,2,5,0],[7,2,8,4] >;
C5×Dic3 in GAP, Magma, Sage, TeX
C_5\times {\rm Dic}_3
% in TeX
G:=Group("C5xDic3");
// GroupNames label
G:=SmallGroup(60,1);
// by ID
G=gap.SmallGroup(60,1);
# by ID
G:=PCGroup([4,-2,-5,-2,-3,40,643]);
// Polycyclic
G:=Group<a,b,c|a^5=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C5×Dic3 in TeX
Character table of C5×Dic3 in TeX