direct product, cyclic, abelian, monomial
Aliases: C6, also denoted Z6, rotations of a regular hexagon, SmallGroup(6,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C6 |
C1 — C6 |
C1 — C6 |
Generators and relations for C6
G = < a | a6=1 >
Character table of C6
class | 1 | 2 | 3A | 3B | 6A | 6B | |
size | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | linear of order 6 faithful |
ρ5 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | linear of order 6 faithful |
(1 2 3 4 5 6)
G:=sub<Sym(6)| (1,2,3,4,5,6)>;
G:=Group( (1,2,3,4,5,6) );
G=PermutationGroup([[(1,2,3,4,5,6)]])
G:=TransitiveGroup(6,1);
C6 is a maximal subgroup of
Dic3 SL2(𝔽3) C52⋊C6
Cp⋊C6, p=1 mod 3: F7 C13⋊C6 C19⋊C6 C31⋊C6 C37⋊C6 C43⋊C6 C61⋊C6 C67⋊C6 ...
C6 is a maximal quotient of
C52⋊C6
Cp⋊C6, p=1 mod 3: F7 C13⋊C6 C19⋊C6 C31⋊C6 C37⋊C6 C43⋊C6 C61⋊C6 C67⋊C6 ...
action | f(x) | Disc(f) |
---|---|---|
6T1 | x6+x3+1 | -39 |
Matrix representation of C6 ►in GL1(𝔽7) generated by
3 |
G:=sub<GL(1,GF(7))| [3] >;
C6 in GAP, Magma, Sage, TeX
C_6
% in TeX
G:=Group("C6");
// GroupNames label
G:=SmallGroup(6,2);
// by ID
G=gap.SmallGroup(6,2);
# by ID
G:=PCGroup([2,-2,-3]);
// Polycyclic
G:=Group<a|a^6=1>;
// generators/relations
Export