p-group, cyclic, elementary abelian, simple, monomial
Aliases: C3, A3, also denoted Z3, Alt3, rotations of a regular triangle, SmallGroup(3,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C3 |
C1 — C3 |
C1 — C3 |
C1 — C3 |
Generators and relations for C3
G = < a | a3=1 >
Character table of C3
class | 1 | 3A | 3B | |
size | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ3 | ζ32 | linear of order 3 faithful |
ρ3 | 1 | ζ32 | ζ3 | linear of order 3 faithful |
(1 2 3)
G:=sub<Sym(3)| (1,2,3)>;
G:=Group( (1,2,3) );
G=PermutationGroup([[(1,2,3)]])
G:=TransitiveGroup(3,1);
C3 is a maximal subgroup of
S3 C9 A4 C52⋊C3 C112⋊C3
Cp⋊C3, p=1 mod 3: C7⋊C3 C13⋊C3 C19⋊C3 C31⋊C3 C37⋊C3 C43⋊C3 C61⋊C3 C67⋊C3 ...
C3 is a maximal quotient of
C9 A4 C52⋊C3 C112⋊C3
Cp⋊C3, p=1 mod 3: C7⋊C3 C13⋊C3 C19⋊C3 C31⋊C3 C37⋊C3 C43⋊C3 C61⋊C3 C67⋊C3 ...
action | f(x) | Disc(f) |
---|---|---|
3T1 | x3-3x+1 | 34 |
Matrix representation of C3 ►in GL1(𝔽7) generated by
4 |
G:=sub<GL(1,GF(7))| [4] >;
C3 in GAP, Magma, Sage, TeX
C_3
% in TeX
G:=Group("C3");
// GroupNames label
G:=SmallGroup(3,1);
// by ID
G=gap.SmallGroup(3,1);
# by ID
G:=PCGroup([1,-3]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^3=1>;
// generators/relations
Export