Extensions 1→N→G→Q→1 with N=M4(2) and Q=C2

Direct product G=N×Q with N=M4(2) and Q=C2
dρLabelID
C2×M4(2)16C2xM4(2)32,37

Semidirect products G=N:Q with N=M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
M4(2)⋊1C2 = C8⋊C22φ: C2/C1C2 ⊆ Out M4(2)84+M4(2):1C232,43
M4(2)⋊2C2 = C8.C22φ: C2/C1C2 ⊆ Out M4(2)164-M4(2):2C232,44
M4(2)⋊3C2 = C4.D4φ: C2/C1C2 ⊆ Out M4(2)84+M4(2):3C232,7
M4(2)⋊4C2 = C4≀C2φ: C2/C1C2 ⊆ Out M4(2)82M4(2):4C232,11
M4(2)⋊5C2 = C8○D4φ: trivial image162M4(2):5C232,38

Non-split extensions G=N.Q with N=M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
M4(2).1C2 = C4.10D4φ: C2/C1C2 ⊆ Out M4(2)164-M4(2).1C232,8
M4(2).2C2 = C8.C4φ: C2/C1C2 ⊆ Out M4(2)162M4(2).2C232,15

׿
×
𝔽