p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.10D4, M4(2).1C2, (C2×C4).C4, (C2×Q8).1C2, (C2×C4).2C22, C22.4(C2×C4), C2.5(C22⋊C4), SmallGroup(32,8)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.10D4
G = < a,b,c | a4=1, b4=a2, c2=bab-1=a-1, ac=ca, cbc-1=a-1b3 >
Character table of C4.10D4
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 3 5 7)(2 8 6 4)(9 11 13 15)(10 16 14 12)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 16 7 10 5 12 3 14)(2 9 4 15 6 13 8 11)
G:=sub<Sym(16)| (1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16,7,10,5,12,3,14)(2,9,4,15,6,13,8,11)>;
G:=Group( (1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16,7,10,5,12,3,14)(2,9,4,15,6,13,8,11) );
G=PermutationGroup([[(1,3,5,7),(2,8,6,4),(9,11,13,15),(10,16,14,12)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,16,7,10,5,12,3,14),(2,9,4,15,6,13,8,11)]])
G:=TransitiveGroup(16,40);
C4.10D4 is a maximal subgroup of
C42.C4 C42.3C4 M4(2).8C22 D4.8D4 D4.10D4 Dic5.D4 (C3×C12).D4 C3⋊Dic3.D4 Dic13.D4
C4p.D4: D4.3D4 D4.5D4 C12.47D4 C12.10D4 C4.12D20 C20.10D4 C4.12D28 C28.10D4 ...
C4.10D4 is a maximal quotient of
Dic5.D4 (C3×C12).D4 C3⋊Dic3.D4 Dic13.D4
C4.D4p: C4.10D8 C12.47D4 C4.12D20 C4.12D28 C44.47D4 C4.12D52 ...
(C2×C4).D2p: C22.M4(2) C42.2C22 C22.C42 C12.10D4 C20.10D4 C28.10D4 C44.10D4 C52.10D4 ...
Matrix representation of C4.10D4 ►in GL4(𝔽3) generated by
0 | 0 | 0 | 2 |
0 | 1 | 1 | 0 |
0 | 1 | 2 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 2 | 0 |
2 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(3))| [0,0,0,1,0,1,1,0,0,1,2,0,2,0,0,0],[0,0,1,0,1,0,0,1,0,0,0,1,0,2,1,0],[0,2,2,0,1,0,0,0,2,0,0,1,0,1,0,0] >;
C4.10D4 in GAP, Magma, Sage, TeX
C_4._{10}D_4
% in TeX
G:=Group("C4.10D4");
// GroupNames label
G:=SmallGroup(32,8);
// by ID
G=gap.SmallGroup(32,8);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,40,61,86,302,248,58]);
// Polycyclic
G:=Group<a,b,c|a^4=1,b^4=a^2,c^2=b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b^3>;
// generators/relations
Export
Subgroup lattice of C4.10D4 in TeX
Character table of C4.10D4 in TeX