Extensions 1→N→G→Q→1 with N=2- (1+4) and Q=C4

Direct product G=N×Q with N=2- (1+4) and Q=C4
dρLabelID
C4×2- (1+4)64C4xES-(2,2)128,2162

Semidirect products G=N:Q with N=2- (1+4) and Q=C4
extensionφ:Q→Out NdρLabelID
2- (1+4)⋊C4 = C42.3D4φ: C4/C1C4 ⊆ Out 2- (1+4)164ES-(2,2):C4128,136
2- (1+4)2C4 = 2- (1+4)2C4φ: C4/C2C2 ⊆ Out 2- (1+4)32ES-(2,2):2C4128,525
2- (1+4)3C4 = 2- (1+4)3C4φ: C4/C2C2 ⊆ Out 2- (1+4)324ES-(2,2):3C4128,526
2- (1+4)4C4 = 2- (1+4)4C4φ: C4/C2C2 ⊆ Out 2- (1+4)64ES-(2,2):4C4128,1630
2- (1+4)5C4 = 2+ (1+4)6C4φ: C4/C2C2 ⊆ Out 2- (1+4)164ES-(2,2):5C4128,1633

Non-split extensions G=N.Q with N=2- (1+4) and Q=C4
extensionφ:Q→Out NdρLabelID
2- (1+4).C4 = C42.4D4φ: C4/C1C4 ⊆ Out 2- (1+4)164-ES-(2,2).C4128,137
2- (1+4).2C4 = C4.22C25φ: trivial image324ES-(2,2).2C4128,2305

׿
×
𝔽