p-group, cyclic, abelian, monomial
Aliases: C4, also denoted Z4, rotations of a square, SmallGroup(4,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C4 |
C1 — C4 |
C1 — C4 |
Generators and relations for C4
G = < a | a4=1 >
Character table of C4
class | 1 | 2 | 4A | 4B | |
size | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -i | i | linear of order 4 faithful |
ρ4 | 1 | -1 | i | -i | linear of order 4 faithful |
(1 2 3 4)
G:=sub<Sym(4)| (1,2,3,4)>;
G:=Group( (1,2,3,4) );
G=PermutationGroup([[(1,2,3,4)]])
G:=TransitiveGroup(4,1);
C4 is a maximal subgroup of
C8 D4 C32⋊C4 C72⋊C4 C112⋊C4
Dicp: Q8 Dic3 Dic5 Dic7 Dic11 Dic13 Dic17 Dic19 ...
Cp⋊C4, p=1 mod 4: F5 C13⋊C4 C17⋊C4 C29⋊C4 C37⋊C4 C41⋊C4 C53⋊C4 C61⋊C4 ...
C4 is a maximal quotient of
C8 C32⋊C4 C72⋊C4 A5⋊C4 C112⋊C4
Dicp: Dic3 Dic5 Dic7 Dic11 Dic13 Dic17 Dic19 Dic23 ...
Cp⋊C4, p=1 mod 4: F5 C13⋊C4 C17⋊C4 C29⋊C4 C37⋊C4 C41⋊C4 C53⋊C4 C61⋊C4 ...
action | f(x) | Disc(f) |
---|---|---|
4T1 | x4-5x2+5 | 24·53 |
Matrix representation of C4 ►in GL1(𝔽5) generated by
2 |
G:=sub<GL(1,GF(5))| [2] >;
C4 in GAP, Magma, Sage, TeX
C_4
% in TeX
G:=Group("C4");
// GroupNames label
G:=SmallGroup(4,1);
// by ID
G=gap.SmallGroup(4,1);
# by ID
G:=PCGroup([2,-2,-2,4]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^4=1>;
// generators/relations
Export