p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: 2- 1+4, D4○Q8, C2.5C24, C4.10C23, D4.4C22, Q8.4C22, C22.3C23, C4○D4⋊4C2, (C2×Q8)⋊5C2, (C2×C4).8C22, Dirac group of gamma matrices, SmallGroup(32,50)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for 2- 1+4
G = < a,b,c,d | a4=b2=1, c2=d2=a2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=a2c >
Subgroups: 78 in 73 conjugacy classes, 68 normal (3 characteristic)
C1, C2, C2, C4, C22, C2×C4, D4, Q8, C2×Q8, C4○D4, 2- 1+4
Quotients: C1, C2, C22, C23, C24, 2- 1+4
Character table of 2- 1+4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | |
size | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ17 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 16)(2 15)(3 14)(4 13)(5 11)(6 10)(7 9)(8 12)
(1 11 3 9)(2 12 4 10)(5 14 7 16)(6 15 8 13)
(1 4 3 2)(5 8 7 6)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,11)(6,10)(7,9)(8,12), (1,11,3,9)(2,12,4,10)(5,14,7,16)(6,15,8,13), (1,4,3,2)(5,8,7,6)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,11)(6,10)(7,9)(8,12), (1,11,3,9)(2,12,4,10)(5,14,7,16)(6,15,8,13), (1,4,3,2)(5,8,7,6)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,16),(2,15),(3,14),(4,13),(5,11),(6,10),(7,9),(8,12)], [(1,11,3,9),(2,12,4,10),(5,14,7,16),(6,15,8,13)], [(1,4,3,2),(5,8,7,6),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,20);
2- 1+4 is a maximal subgroup of
C2.C25 D4.A4 2- 1+4⋊C5
Q8.D2p: D4.8D4 D4.10D4 D4○SD16 Q8○D8 Q8.15D6 Q8○D12 Q8.10D10 D4.10D10 ...
2- 1+4 is a maximal quotient of
C23.32C23 C23.33C23 C22.31C24 C22.33C24 C22.35C24 C22.36C24 C23.41C23 D4⋊6D4 Q8⋊5D4 D4×Q8 C22.46C24 C22.50C24 Q8⋊3Q8 C22.56C24 C22.57C24 C22.58C24
(C2×C4).D2p: C23.38C23 Q8.15D6 Q8○D12 Q8.10D10 D4.10D10 Q8.10D14 D4.10D14 Q8.10D22 ...
Matrix representation of 2- 1+4 ►in GL4(𝔽3) generated by
1 | 0 | 0 | 2 |
0 | 0 | 2 | 0 |
0 | 1 | 0 | 0 |
2 | 0 | 0 | 2 |
0 | 1 | 2 | 0 |
1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 2 | 0 |
1 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 1 | 2 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
2 | 0 | 0 | 1 |
0 | 2 | 2 | 0 |
G:=sub<GL(4,GF(3))| [1,0,0,2,0,0,1,0,0,2,0,0,2,0,0,2],[0,1,0,0,1,0,0,0,2,0,0,1,0,1,1,0],[0,1,1,0,0,0,0,1,2,0,0,2,0,2,0,0],[0,1,2,0,2,0,0,2,0,0,0,2,0,0,1,0] >;
2- 1+4 in GAP, Magma, Sage, TeX
2_-^{1+4}
% in TeX
G:=Group("ES-(2,2)");
// GroupNames label
G:=SmallGroup(32,50);
// by ID
G=gap.SmallGroup(32,50);
# by ID
G:=PCGroup([5,-2,2,2,2,-2,181,86,157,72,483]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=1,c^2=d^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c>;
// generators/relations
Export