Extensions 1→N→G→Q→1 with N=C4≀C2 and Q=C4

Direct product G=N×Q with N=C4≀C2 and Q=C4

Semidirect products G=N:Q with N=C4≀C2 and Q=C4
extensionφ:Q→Out NdρLabelID
C4≀C21C4 = C4≀C2⋊C4φ: C4/C2C2 ⊆ Out C4≀C232C4wrC2:1C4128,591
C4≀C22C4 = C429(C2×C4)φ: C4/C2C2 ⊆ Out C4≀C232C4wrC2:2C4128,592
C4≀C23C4 = M4(2).41D4φ: C4/C2C2 ⊆ Out C4≀C2164C4wrC2:3C4128,593
C4≀C24C4 = D4.C42φ: C4/C2C2 ⊆ Out C4≀C232C4wrC2:4C4128,491
C4≀C25C4 = D4.3C42φ: C4/C2C2 ⊆ Out C4≀C232C4wrC2:5C4128,497
C4≀C26C4 = Q8.C42φ: trivial image32C4wrC2:6C4128,496

Non-split extensions G=N.Q with N=C4≀C2 and Q=C4
extensionφ:Q→Out NdρLabelID
C4≀C2.C4 = D8.C8φ: C4/C2C2 ⊆ Out C4≀C2324C4wrC2.C4128,903
C4≀C2.2C4 = C16○D8φ: trivial image322C4wrC2.2C4128,902