# Extensions 1→N→G→Q→1 with N=C4.9C42 and Q=C2

Direct product G=N×Q with N=C4.9C42 and Q=C2
dρLabelID
C2×C4.9C4232C2xC4.9C4^2128,462

Semidirect products G=N:Q with N=C4.9C42 and Q=C2
extensionφ:Q→Out NdρLabelID
C4.9C421C2 = C23.D8φ: C2/C1C2 ⊆ Out C4.9C42168+C4.9C4^2:1C2128,71
C4.9C422C2 = C42.5D4φ: C2/C1C2 ⊆ Out C4.9C42168+C4.9C4^2:2C2128,636
C4.9C423C2 = C42.6D4φ: C2/C1C2 ⊆ Out C4.9C42328-C4.9C4^2:3C2128,637
C4.9C424C2 = C422D4φ: C2/C1C2 ⊆ Out C4.9C42164C4.9C4^2:4C2128,742
C4.9C425C2 = C22⋊C4.7D4φ: C2/C1C2 ⊆ Out C4.9C42324C4.9C4^2:5C2128,785
C4.9C426C2 = C42.10D4φ: C2/C1C2 ⊆ Out C4.9C42324C4.9C4^2:6C2128,830
C4.9C427C2 = (C2×D4).24Q8φ: C2/C1C2 ⊆ Out C4.9C42324C4.9C4^2:7C2128,544
C4.9C428C2 = (C2×C42)⋊C4φ: C2/C1C2 ⊆ Out C4.9C42164C4.9C4^2:8C2128,559
C4.9C429C2 = C4.(C4×D4)φ: C2/C1C2 ⊆ Out C4.9C42328-C4.9C4^2:9C2128,641
C4.9C4210C2 = (C2×C8)⋊4D4φ: C2/C1C2 ⊆ Out C4.9C42168+C4.9C4^2:10C2128,642
C4.9C4211C2 = C42⋊D4φ: C2/C1C2 ⊆ Out C4.9C42168+C4.9C4^2:11C2128,643
C4.9C4212C2 = C42.7D4φ: C2/C1C2 ⊆ Out C4.9C42328-C4.9C4^2:12C2128,644
C4.9C4213C2 = C42.8D4φ: C2/C1C2 ⊆ Out C4.9C42164C4.9C4^2:13C2128,763
C4.9C4214C2 = C42.9D4φ: C2/C1C2 ⊆ Out C4.9C42324C4.9C4^2:14C2128,812
C4.9C4215C2 = (C2×C8).D4φ: C2/C1C2 ⊆ Out C4.9C42168+C4.9C4^2:15C2128,813

Non-split extensions G=N.Q with N=C4.9C42 and Q=C2
extensionφ:Q→Out NdρLabelID
C4.9C42.1C2 = C23.2D8φ: C2/C1C2 ⊆ Out C4.9C42328-C4.9C4^2.1C2128,72
C4.9C42.2C2 = C42.32Q8φ: C2/C1C2 ⊆ Out C4.9C42164C4.9C4^2.2C2128,834
C4.9C42.3C2 = C8.(C4⋊C4)φ: C2/C1C2 ⊆ Out C4.9C42324C4.9C4^2.3C2128,565
C4.9C42.4C2 = C8⋊C417C4φ: C2/C1C2 ⊆ Out C4.9C42164C4.9C4^2.4C2128,573
C4.9C42.5C2 = (C2×C8).6D4φ: C2/C1C2 ⊆ Out C4.9C42328-C4.9C4^2.5C2128,814
C4.9C42.6C2 = C8.16C42φ: trivial image324C4.9C4^2.6C2128,479

׿
×
𝔽