p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C22×C8)⋊5C4, (C2×C8).102D4, (C2×D4).24Q8, (C2×Q8).18Q8, C4.9C42⋊7C2, (C2×D4).200D4, C23.9(C4⋊C4), (C2×M4(2))⋊6C4, C23.32(C2×D4), C8.45(C22⋊C4), C4.21(C22⋊Q8), C4.83(C42⋊C2), C23.25D4⋊15C2, C22.39(C4⋊D4), (C22×C8).214C22, (C22×C4).662C23, C42⋊C2.2C22, C23.C23.3C2, C2.21(C23.7Q8), (C2×M4(2)).314C22, (C2×C4).3(C2×Q8), (C2×C8).11(C2×C4), (C2×C8○D4).1C2, (C2×C4).11(C4⋊C4), (C2×C4).229(C2×D4), C4.91(C2×C22⋊C4), C22.20(C2×C4⋊C4), (C22×C4).74(C2×C4), (C2×C4).737(C4○D4), (C2×C4).532(C22×C4), (C2×C4○D4).256C22, SmallGroup(128,544)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4).24Q8
G = < a,b,c,d,e | a2=b4=c2=1, d4=b2, e2=abd2, ab=ba, ece-1=ac=ca, ad=da, eae-1=ab2, cbc=b-1, bd=db, be=eb, cd=dc, ede-1=d3 >
Subgroups: 244 in 130 conjugacy classes, 58 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C23⋊C4, C4.Q8, C2.D8, C42⋊C2, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C8○D4, C2×C4○D4, C4.9C42, C23.C23, C23.25D4, C2×C8○D4, (C2×D4).24Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4, C22⋊Q8, C23.7Q8, (C2×D4).24Q8
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)(17 23 21 19)(18 24 22 20)(25 27 29 31)(26 28 30 32)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 11 31 17)(2 14 32 20)(3 9 25 23)(4 12 26 18)(5 15 27 21)(6 10 28 24)(7 13 29 19)(8 16 30 22)
G:=sub<Sym(32)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,31,17)(2,14,32,20)(3,9,25,23)(4,12,26,18)(5,15,27,21)(6,10,28,24)(7,13,29,19)(8,16,30,22)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,31,17)(2,14,32,20)(3,9,25,23)(4,12,26,18)(5,15,27,21)(6,10,28,24)(7,13,29,19)(8,16,30,22) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12),(17,23,21,19),(18,24,22,20),(25,27,29,31),(26,28,30,32)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,11,31,17),(2,14,32,20),(3,9,25,23),(4,12,26,18),(5,15,27,21),(6,10,28,24),(7,13,29,19),(8,16,30,22)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4O | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | - | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | Q8 | Q8 | C4○D4 | (C2×D4).24Q8 |
kernel | (C2×D4).24Q8 | C4.9C42 | C23.C23 | C23.25D4 | C2×C8○D4 | C22×C8 | C2×M4(2) | C2×C8 | C2×D4 | C2×D4 | C2×Q8 | C2×C4 | C1 |
# reps | 1 | 2 | 2 | 2 | 1 | 4 | 4 | 4 | 2 | 1 | 1 | 4 | 4 |
Matrix representation of (C2×D4).24Q8 ►in GL4(𝔽17) generated by
16 | 2 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 13 | 0 | 16 |
0 | 13 | 16 | 0 |
4 | 9 | 0 | 0 |
0 | 13 | 0 | 0 |
16 | 1 | 0 | 13 |
16 | 1 | 13 | 0 |
4 | 9 | 15 | 0 |
0 | 0 | 16 | 1 |
16 | 1 | 0 | 13 |
16 | 2 | 0 | 13 |
15 | 11 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 12 | 12 | 3 |
0 | 12 | 3 | 12 |
1 | 15 | 8 | 0 |
1 | 15 | 4 | 4 |
13 | 8 | 0 | 1 |
0 | 4 | 0 | 1 |
G:=sub<GL(4,GF(17))| [16,0,0,0,2,1,13,13,0,0,0,16,0,0,16,0],[4,0,16,16,9,13,1,1,0,0,0,13,0,0,13,0],[4,0,16,16,9,0,1,2,15,16,0,0,0,1,13,13],[15,0,0,0,11,9,12,12,0,0,12,3,0,0,3,12],[1,1,13,0,15,15,8,4,8,4,0,0,0,4,1,1] >;
(C2×D4).24Q8 in GAP, Magma, Sage, TeX
(C_2\times D_4)._{24}Q_8
% in TeX
G:=Group("(C2xD4).24Q8");
// GroupNames label
G:=SmallGroup(128,544);
// by ID
G=gap.SmallGroup(128,544);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,2019,248,2804,1027]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^4=b^2,e^2=a*b*d^2,a*b=b*a,e*c*e^-1=a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*d*e^-1=d^3>;
// generators/relations