Extensions 1→N→G→Q→1 with N=C2 and Q=M4(2)⋊4C4

Direct product G=N×Q with N=C2 and Q=M4(2)⋊4C4
dρLabelID
C2×M4(2)⋊4C432C2xM4(2):4C4128,475


Non-split extensions G=N.Q with N=C2 and Q=M4(2)⋊4C4
extensionφ:Q→Aut NdρLabelID
C2.1(M4(2)⋊4C4) = C42.2Q8central extension (φ=1)64C2.1(M4(2):4C4)128,13
C2.2(M4(2)⋊4C4) = C23.21C42central extension (φ=1)32C2.2(M4(2):4C4)128,14
C2.3(M4(2)⋊4C4) = C42.3Q8central extension (φ=1)64C2.3(M4(2):4C4)128,15
C2.4(M4(2)⋊4C4) = C42.5Q8central stem extension (φ=1)32C2.4(M4(2):4C4)128,18
C2.5(M4(2)⋊4C4) = C42.23D4central stem extension (φ=1)64C2.5(M4(2):4C4)128,19
C2.6(M4(2)⋊4C4) = C42.6Q8central stem extension (φ=1)32C2.6(M4(2):4C4)128,20
C2.7(M4(2)⋊4C4) = C42.26D4central stem extension (φ=1)64C2.7(M4(2):4C4)128,23
C2.8(M4(2)⋊4C4) = C42.9Q8central stem extension (φ=1)32C2.8(M4(2):4C4)128,32
C2.9(M4(2)⋊4C4) = C42.389D4central stem extension (φ=1)64C2.9(M4(2):4C4)128,33
C2.10(M4(2)⋊4C4) = C42.370D4central stem extension (φ=1)64C2.10(M4(2):4C4)128,34
C2.11(M4(2)⋊4C4) = C42.10Q8central stem extension (φ=1)32C2.11(M4(2):4C4)128,35
C2.12(M4(2)⋊4C4) = C23.C42central stem extension (φ=1)32C2.12(M4(2):4C4)128,37
C2.13(M4(2)⋊4C4) = C23.8C42central stem extension (φ=1)32C2.13(M4(2):4C4)128,38
C2.14(M4(2)⋊4C4) = C42.30D4central stem extension (φ=1)64C2.14(M4(2):4C4)128,39
C2.15(M4(2)⋊4C4) = C42.31D4central stem extension (φ=1)64C2.15(M4(2):4C4)128,40

׿
×
𝔽