p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2)⋊4C4, C22.3C42, (C2×C8)⋊2C4, C4.5(C4⋊C4), (C2×C4).3Q8, (C2×C4).114D4, C22⋊C4.1C4, C23.6(C2×C4), C22.6(C4⋊C4), C4.22(C22⋊C4), C42⋊C2.3C2, (C2×M4(2)).9C2, C22.8(C22⋊C4), (C22×C4).21C22, C2.9(C2.C42), (C2×C4).65(C2×C4), SmallGroup(64,25)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2)⋊4C4
G = < a,b,c | a8=b2=c4=1, bab=a5, cac-1=ab, cbc-1=a4b >
Character table of M4(2)⋊4C4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | -i | 1 | 1 | -i | i | i | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | i | -i | -1 | -1 | 1 | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | i | -1 | -1 | i | -i | -i | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -1 | -i | i | 1 | 1 | -1 | i | -i | linear of order 4 |
ρ9 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | -i | -1 | -1 | -i | i | i | 1 | 1 | linear of order 4 |
ρ10 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | -i | i | -1 | -1 | 1 | i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | -i | i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | i | 1 | 1 | i | -i | -i | -1 | -1 | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -1 | i | -i | 1 | 1 | -1 | -i | i | linear of order 4 |
ρ17 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(9 13)(11 15)
(1 9)(2 14 6 10)(3 15)(4 12 8 16)(5 13)(7 11)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,13)(11,15), (1,9)(2,14,6,10)(3,15)(4,12,8,16)(5,13)(7,11)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,13)(11,15), (1,9)(2,14,6,10)(3,15)(4,12,8,16)(5,13)(7,11) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(9,13),(11,15)], [(1,9),(2,14,6,10),(3,15),(4,12,8,16),(5,13),(7,11)]])
G:=TransitiveGroup(16,90);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 15)(2 12)(3 9)(4 14)(5 11)(6 16)(7 13)(8 10)
(1 9 5 13)(2 4)(3 15 7 11)(6 8)(10 12)(14 16)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10), (1,9,5,13)(2,4)(3,15,7,11)(6,8)(10,12)(14,16)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10), (1,9,5,13)(2,4)(3,15,7,11)(6,8)(10,12)(14,16) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,15),(2,12),(3,9),(4,14),(5,11),(6,16),(7,13),(8,10)], [(1,9,5,13),(2,4),(3,15,7,11),(6,8),(10,12),(14,16)]])
G:=TransitiveGroup(16,110);
M4(2)⋊4C4 is a maximal subgroup of
C23.5C42 C8○D4⋊C4 C24.6(C2×C4) (C2×Q8).211D4 C8⋊C4⋊17C4 M4(2).41D4 (C2×D4).Q8 M4(2).44D4 (C2×C8)⋊D4 M4(2).46D4 M4(2).47D4 C42.5D4 C42.6D4 C42.426D4 M4(2)⋊21D4 M4(2).50D4 C42.427D4 M4(2)⋊5D4 M4(2).D4 C42.8D4 M4(2).8D4 M4(2).9D4 C42.9D4 (C2×C8).D4 (C2×C8).6D4 C42.32Q8 C22⋊C4.Q8 C22⋊C4.F5 (C2×C8)⋊F5 M4(2)⋊4F5
(C2×C4p).Q8: C8.(C4⋊C4) M4(2).27D4 (C2×C12).Q8 (C2×C24)⋊C4 M4(2)⋊4Dic3 C20.60(C4⋊C4) (C2×C40)⋊C4 M4(2)⋊4Dic5 ...
M4(2)⋊4C4 is a maximal quotient of
C42.2Q8 C23.21C42 C42.3Q8 C42.23D4 C42.6Q8 C42.26D4 C42.9Q8 C42.370D4 C23.C42 C23.8C42 C42.30D4 C42.31D4 C22⋊C4.F5 (C2×C8)⋊F5 M4(2)⋊4F5
(C2×C4).D4p: C42.5Q8 C42.389D4 C42.10Q8 (C2×C12).Q8 (C2×C24)⋊C4 M4(2)⋊4Dic3 C20.60(C4⋊C4) (C2×C40)⋊C4 ...
Matrix representation of M4(2)⋊4C4 ►in GL4(𝔽5) generated by
0 | 3 | 0 | 0 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 |
3 | 0 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 0 | 3 |
G:=sub<GL(4,GF(5))| [0,0,1,0,3,0,0,0,0,0,0,4,0,2,0,0],[0,0,0,3,0,0,4,0,0,4,0,0,2,0,0,0],[2,0,0,0,0,0,3,0,0,2,0,0,0,0,0,3] >;
M4(2)⋊4C4 in GAP, Magma, Sage, TeX
M_4(2)\rtimes_4C_4
% in TeX
G:=Group("M4(2):4C4");
// GroupNames label
G:=SmallGroup(64,25);
// by ID
G=gap.SmallGroup(64,25);
# by ID
G:=PCGroup([6,-2,2,-2,2,2,-2,48,73,103,650,489,88]);
// Polycyclic
G:=Group<a,b,c|a^8=b^2=c^4=1,b*a*b=a^5,c*a*c^-1=a*b,c*b*c^-1=a^4*b>;
// generators/relations
Export
Subgroup lattice of M4(2)⋊4C4 in TeX
Character table of M4(2)⋊4C4 in TeX