Extensions 1→N→G→Q→1 with N=C2 and Q=C2.D16

Direct product G=N×Q with N=C2 and Q=C2.D16

Non-split extensions G=N.Q with N=C2 and Q=C2.D16
extensionφ:Q→Aut NdρLabelID
C2.1(C2.D16) = C4.16D16central extension (φ=1)64C2.1(C2.D16)128,63
C2.2(C2.D16) = C8.7C42central extension (φ=1)128C2.2(C2.D16)128,112
C2.3(C2.D16) = C22.SD32central stem extension (φ=1)32C2.3(C2.D16)128,79
C2.4(C2.D16) = C4.D16central stem extension (φ=1)64C2.4(C2.D16)128,93
C2.5(C2.D16) = C4.10D16central stem extension (φ=1)128C2.5(C2.D16)128,96
C2.6(C2.D16) = D162C4central stem extension (φ=1)64C2.6(C2.D16)128,147
C2.7(C2.D16) = Q322C4central stem extension (φ=1)128C2.7(C2.D16)128,148
C2.8(C2.D16) = D16.C4central stem extension (φ=1)642C2.8(C2.D16)128,149
C2.9(C2.D16) = D163C4central stem extension (φ=1)324C2.9(C2.D16)128,150
C2.10(C2.D16) = M6(2)⋊C2central stem extension (φ=1)324+C2.10(C2.D16)128,151
C2.11(C2.D16) = C16.18D4central stem extension (φ=1)644-C2.11(C2.D16)128,152