p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8⋊1C4, C8.14D4, C2.1D16, C4.1SD16, C2.1SD32, C22.8D8, (C2×C16)⋊3C2, C8.7(C2×C4), C2.D8⋊1C2, (C2×D8).1C2, (C2×C4).60D4, C4.1(C22⋊C4), (C2×C8).69C22, C2.6(D4⋊C4), 2-Sylow(CSO-(4,7)), SmallGroup(64,38)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2.D16
G = < a,b,c | a2=b16=1, c2=a, ab=ba, ac=ca, cbc-1=ab-1 >
Character table of C2.D16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | -i | 1 | -1 | 1 | -1 | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | 1 | -1 | 1 | -1 | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | i | 1 | -1 | 1 | -1 | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | 1 | -1 | 1 | -1 | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 26 27 16)(2 15 28 25)(3 24 29 14)(4 13 30 23)(5 22 31 12)(6 11 32 21)(7 20 17 10)(8 9 18 19)
G:=sub<Sym(32)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,26,27,16)(2,15,28,25)(3,24,29,14)(4,13,30,23)(5,22,31,12)(6,11,32,21)(7,20,17,10)(8,9,18,19)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,26,27,16)(2,15,28,25)(3,24,29,14)(4,13,30,23)(5,22,31,12)(6,11,32,21)(7,20,17,10)(8,9,18,19) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,26,27,16),(2,15,28,25),(3,24,29,14),(4,13,30,23),(5,22,31,12),(6,11,32,21),(7,20,17,10),(8,9,18,19)]])
C2.D16 is a maximal subgroup of
C23.24D8 C23.39D8 C23.40D8 C4×D16 C4×SD32 SD32⋊3C4 D16⋊4C4 D8⋊7D4 D8⋊8D4 D8.9D4 D8.10D4 D8⋊2D4 Q16⋊2D4 D8.5D4 Q16.5D4 C16⋊7D4 C16⋊8D4 C16⋊D4 C16⋊2D4 D8⋊Q8 D8.Q8 C22.D16 C23.49D8 C23.19D8 C8.22SD16 C8.12SD16 C8.13SD16 D5.D16
C2p.D16: D8⋊1Q8 C4.4D16 C6.D16 C2.D48 D8⋊1Dic3 C40.5D4 D40⋊7C4 C10.D16 ...
C2.D16 is a maximal quotient of
C22.SD32 C8.7C42 D16⋊2C4 Q32⋊2C4 D16⋊3C4 D5.D16
C2p.D16: C4.16D16 C4.D16 C4.10D16 D16.C4 M6(2)⋊C2 C16.18D4 C6.D16 C2.D48 ...
Matrix representation of C2.D16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
7 | 2 | 0 | 0 |
10 | 10 | 0 | 0 |
0 | 0 | 7 | 1 |
0 | 0 | 16 | 7 |
7 | 2 | 0 | 0 |
9 | 10 | 0 | 0 |
0 | 0 | 7 | 1 |
0 | 0 | 1 | 10 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[7,10,0,0,2,10,0,0,0,0,7,16,0,0,1,7],[7,9,0,0,2,10,0,0,0,0,7,1,0,0,1,10] >;
C2.D16 in GAP, Magma, Sage, TeX
C_2.D_{16}
% in TeX
G:=Group("C2.D16");
// GroupNames label
G:=SmallGroup(64,38);
// by ID
G=gap.SmallGroup(64,38);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,362,188,230,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^16=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C2.D16 in TeX
Character table of C2.D16 in TeX