Extensions 1→N→G→Q→1 with N=C2 and Q=C4×C4⋊C4

Direct product G=N×Q with N=C2 and Q=C4×C4⋊C4
dρLabelID
C2×C4×C4⋊C4128C2xC4xC4:C4128,1001


Non-split extensions G=N.Q with N=C2 and Q=C4×C4⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C4×C4⋊C4) = C4×C2.C42central extension (φ=1)128C2.1(C4xC4:C4)128,164
C2.2(C4×C4⋊C4) = C4×C4⋊C8central extension (φ=1)128C2.2(C4xC4:C4)128,498
C2.3(C4×C4⋊C4) = C8×C4⋊C4central extension (φ=1)128C2.3(C4xC4:C4)128,501
C2.4(C4×C4⋊C4) = C24.624C23central stem extension (φ=1)128C2.4(C4xC4:C4)128,166
C2.5(C4×C4⋊C4) = C24.625C23central stem extension (φ=1)128C2.5(C4xC4:C4)128,167
C2.6(C4×C4⋊C4) = C24.626C23central stem extension (φ=1)128C2.6(C4xC4:C4)128,168
C2.7(C4×C4⋊C4) = C43.7C2central stem extension (φ=1)128C2.7(C4xC4:C4)128,499
C2.8(C4×C4⋊C4) = C42.45Q8central stem extension (φ=1)128C2.8(C4xC4:C4)128,500
C2.9(C4×C4⋊C4) = C4⋊C813C4central stem extension (φ=1)128C2.9(C4xC4:C4)128,502
C2.10(C4×C4⋊C4) = C4⋊C814C4central stem extension (φ=1)128C2.10(C4xC4:C4)128,503
C2.11(C4×C4⋊C4) = C8.14C42central stem extension (φ=1)32C2.11(C4xC4:C4)128,504
C2.12(C4×C4⋊C4) = C8.5C42central stem extension (φ=1)32C2.12(C4xC4:C4)128,505
C2.13(C4×C4⋊C4) = C4×C4.Q8central stem extension (φ=1)128C2.13(C4xC4:C4)128,506
C2.14(C4×C4⋊C4) = C4×C2.D8central stem extension (φ=1)128C2.14(C4xC4:C4)128,507
C2.15(C4×C4⋊C4) = C8⋊C42central stem extension (φ=1)128C2.15(C4xC4:C4)128,508
C2.16(C4×C4⋊C4) = C4×C8.C4central stem extension (φ=1)64C2.16(C4xC4:C4)128,509
C2.17(C4×C4⋊C4) = C8.6C42central stem extension (φ=1)64C2.17(C4xC4:C4)128,510

׿
×
𝔽