Copied to
clipboard

G = C4⋊C813C4order 128 = 27

9th semidirect product of C4⋊C8 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4⋊C813C4, C88(C4⋊C4), (C4×C8)⋊24C4, C42(C8⋊C4), (C2×C8).58Q8, C4.45(C4×Q8), (C2×C8).287D4, C4.169(C4×D4), C2.2(C86D4), (C2×C4).72C42, C2.1(C84Q8), C22.91(C4×D4), C22.23(C4×Q8), C42.314(C2×C4), (C2×C4).45M4(2), C22.27(C8○D4), C2.C42.9C4, C22.55(C2×C42), C4.74(C42⋊C2), (C22×C8).384C22, C23.260(C22×C4), C22.42(C2×M4(2)), C2.16(C82M4(2)), (C22×C4).1613C23, (C2×C42).1049C22, C22.7C42.42C2, C2.9(C4×C4⋊C4), (C2×C4×C8).62C2, (C4×C4⋊C4).7C2, C4.74(C2×C4⋊C4), (C2×C4⋊C4).48C4, (C2×C4⋊C8).53C2, C2.10(C2×C8⋊C4), (C2×C8).137(C2×C4), (C2×C4).333(C2×Q8), (C2×C8⋊C4).26C2, (C2×C4).1505(C2×D4), (C2×C4).923(C4○D4), (C22×C4).110(C2×C4), (C2×C4).603(C22×C4), SmallGroup(128,502)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C4⋊C813C4
C1C2C22C2×C4C22×C4C22×C8C2×C8⋊C4 — C4⋊C813C4
C1C22 — C4⋊C813C4
C1C22×C4 — C4⋊C813C4
C1C2C2C22×C4 — C4⋊C813C4

Generators and relations for C4⋊C813C4
 G = < a,b,c | a4=b8=c4=1, bab-1=cac-1=a-1, cbc-1=b5 >

Subgroups: 188 in 136 conjugacy classes, 92 normal (28 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.C42, C4×C8, C8⋊C4, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C22×C8, C22×C8, C22.7C42, C4×C4⋊C4, C2×C4×C8, C2×C8⋊C4, C2×C4⋊C8, C4⋊C813C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C4⋊C4, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C2×M4(2), C8○D4, C4×C4⋊C4, C2×C8⋊C4, C82M4(2), C86D4, C84Q8, C4⋊C813C4

Smallest permutation representation of C4⋊C813C4
Regular action on 128 points
Generators in S128
(1 116 25 72)(2 65 26 117)(3 118 27 66)(4 67 28 119)(5 120 29 68)(6 69 30 113)(7 114 31 70)(8 71 32 115)(9 24 59 40)(10 33 60 17)(11 18 61 34)(12 35 62 19)(13 20 63 36)(14 37 64 21)(15 22 57 38)(16 39 58 23)(41 75 85 108)(42 109 86 76)(43 77 87 110)(44 111 88 78)(45 79 81 112)(46 105 82 80)(47 73 83 106)(48 107 84 74)(49 104 121 93)(50 94 122 97)(51 98 123 95)(52 96 124 99)(53 100 125 89)(54 90 126 101)(55 102 127 91)(56 92 128 103)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 36 93 82)(2 33 94 87)(3 38 95 84)(4 35 96 81)(5 40 89 86)(6 37 90 83)(7 34 91 88)(8 39 92 85)(9 125 76 68)(10 122 77 65)(11 127 78 70)(12 124 79 67)(13 121 80 72)(14 126 73 69)(15 123 74 66)(16 128 75 71)(17 97 43 26)(18 102 44 31)(19 99 45 28)(20 104 46 25)(21 101 47 30)(22 98 48 27)(23 103 41 32)(24 100 42 29)(49 105 116 63)(50 110 117 60)(51 107 118 57)(52 112 119 62)(53 109 120 59)(54 106 113 64)(55 111 114 61)(56 108 115 58)

G:=sub<Sym(128)| (1,116,25,72)(2,65,26,117)(3,118,27,66)(4,67,28,119)(5,120,29,68)(6,69,30,113)(7,114,31,70)(8,71,32,115)(9,24,59,40)(10,33,60,17)(11,18,61,34)(12,35,62,19)(13,20,63,36)(14,37,64,21)(15,22,57,38)(16,39,58,23)(41,75,85,108)(42,109,86,76)(43,77,87,110)(44,111,88,78)(45,79,81,112)(46,105,82,80)(47,73,83,106)(48,107,84,74)(49,104,121,93)(50,94,122,97)(51,98,123,95)(52,96,124,99)(53,100,125,89)(54,90,126,101)(55,102,127,91)(56,92,128,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,36,93,82)(2,33,94,87)(3,38,95,84)(4,35,96,81)(5,40,89,86)(6,37,90,83)(7,34,91,88)(8,39,92,85)(9,125,76,68)(10,122,77,65)(11,127,78,70)(12,124,79,67)(13,121,80,72)(14,126,73,69)(15,123,74,66)(16,128,75,71)(17,97,43,26)(18,102,44,31)(19,99,45,28)(20,104,46,25)(21,101,47,30)(22,98,48,27)(23,103,41,32)(24,100,42,29)(49,105,116,63)(50,110,117,60)(51,107,118,57)(52,112,119,62)(53,109,120,59)(54,106,113,64)(55,111,114,61)(56,108,115,58)>;

G:=Group( (1,116,25,72)(2,65,26,117)(3,118,27,66)(4,67,28,119)(5,120,29,68)(6,69,30,113)(7,114,31,70)(8,71,32,115)(9,24,59,40)(10,33,60,17)(11,18,61,34)(12,35,62,19)(13,20,63,36)(14,37,64,21)(15,22,57,38)(16,39,58,23)(41,75,85,108)(42,109,86,76)(43,77,87,110)(44,111,88,78)(45,79,81,112)(46,105,82,80)(47,73,83,106)(48,107,84,74)(49,104,121,93)(50,94,122,97)(51,98,123,95)(52,96,124,99)(53,100,125,89)(54,90,126,101)(55,102,127,91)(56,92,128,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,36,93,82)(2,33,94,87)(3,38,95,84)(4,35,96,81)(5,40,89,86)(6,37,90,83)(7,34,91,88)(8,39,92,85)(9,125,76,68)(10,122,77,65)(11,127,78,70)(12,124,79,67)(13,121,80,72)(14,126,73,69)(15,123,74,66)(16,128,75,71)(17,97,43,26)(18,102,44,31)(19,99,45,28)(20,104,46,25)(21,101,47,30)(22,98,48,27)(23,103,41,32)(24,100,42,29)(49,105,116,63)(50,110,117,60)(51,107,118,57)(52,112,119,62)(53,109,120,59)(54,106,113,64)(55,111,114,61)(56,108,115,58) );

G=PermutationGroup([[(1,116,25,72),(2,65,26,117),(3,118,27,66),(4,67,28,119),(5,120,29,68),(6,69,30,113),(7,114,31,70),(8,71,32,115),(9,24,59,40),(10,33,60,17),(11,18,61,34),(12,35,62,19),(13,20,63,36),(14,37,64,21),(15,22,57,38),(16,39,58,23),(41,75,85,108),(42,109,86,76),(43,77,87,110),(44,111,88,78),(45,79,81,112),(46,105,82,80),(47,73,83,106),(48,107,84,74),(49,104,121,93),(50,94,122,97),(51,98,123,95),(52,96,124,99),(53,100,125,89),(54,90,126,101),(55,102,127,91),(56,92,128,103)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,36,93,82),(2,33,94,87),(3,38,95,84),(4,35,96,81),(5,40,89,86),(6,37,90,83),(7,34,91,88),(8,39,92,85),(9,125,76,68),(10,122,77,65),(11,127,78,70),(12,124,79,67),(13,121,80,72),(14,126,73,69),(15,123,74,66),(16,128,75,71),(17,97,43,26),(18,102,44,31),(19,99,45,28),(20,104,46,25),(21,101,47,30),(22,98,48,27),(23,103,41,32),(24,100,42,29),(49,105,116,63),(50,110,117,60),(51,107,118,57),(52,112,119,62),(53,109,120,59),(54,106,113,64),(55,111,114,61),(56,108,115,58)]])

56 conjugacy classes

class 1 2A···2G4A···4H4I···4P4Q···4X8A···8P8Q···8X
order12···24···44···44···48···88···8
size11···11···12···24···42···24···4

56 irreducible representations

dim111111111122222
type+++++++-
imageC1C2C2C2C2C2C4C4C4C4D4Q8M4(2)C4○D4C8○D4
kernelC4⋊C813C4C22.7C42C4×C4⋊C4C2×C4×C8C2×C8⋊C4C2×C4⋊C8C2.C42C4×C8C4⋊C8C2×C4⋊C4C2×C8C2×C8C2×C4C2×C4C22
# reps121121488422848

Matrix representation of C4⋊C813C4 in GL5(𝔽17)

10000
04000
001300
000160
000016
,
130000
00200
02000
000015
000150
,
130000
00100
016000
00001
000160

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,4,0,0,0,0,0,13,0,0,0,0,0,16,0,0,0,0,0,16],[13,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,15,0,0,0,15,0],[13,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,1,0] >;

C4⋊C813C4 in GAP, Magma, Sage, TeX

C_4\rtimes C_8\rtimes_{13}C_4
% in TeX

G:=Group("C4:C8:13C4");
// GroupNames label

G:=SmallGroup(128,502);
// by ID

G=gap.SmallGroup(128,502);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,723,142,172]);
// Polycyclic

G:=Group<a,b,c|a^4=b^8=c^4=1,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations

׿
×
𝔽