Copied to
clipboard

G = D4×C24order 128 = 27

Direct product of C24 and D4

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: D4×C24, C4⋊C25, C263C2, C22⋊C25, C2.1C26, C233C24, C2412C23, C2511C22, (C2×C4)⋊4C24, (C24×C4)⋊10C2, (C22×C4)⋊25C23, (C23×C4)⋊60C22, SmallGroup(128,2320)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — D4×C24
C1C2C22C23C24C25C26 — D4×C24
C1C2 — D4×C24
C1C25 — D4×C24
C1C2 — D4×C24

Generators and relations for D4×C24
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 7420 in 5276 conjugacy classes, 3132 normal (5 characteristic)
C1, C2, C2 [×30], C2 [×32], C4 [×16], C22 [×187], C22 [×480], C2×C4 [×120], D4 [×256], C23 [×395], C23 [×1120], C22×C4 [×140], C2×D4 [×960], C24 [×311], C24 [×480], C23×C4 [×30], C22×D4 [×560], C25, C25 [×60], C25 [×32], C24×C4, D4×C23 [×60], C26 [×2], D4×C24
Quotients: C1, C2 [×63], C22 [×651], D4 [×16], C23 [×1395], C2×D4 [×120], C24 [×651], C22×D4 [×140], C25 [×63], D4×C23 [×30], C26, D4×C24

Smallest permutation representation of D4×C24
On 64 points
Generators in S64
(1 17)(2 18)(3 19)(4 20)(5 24)(6 21)(7 22)(8 23)(9 28)(10 25)(11 26)(12 27)(13 32)(14 29)(15 30)(16 31)(33 50)(34 51)(35 52)(36 49)(37 54)(38 55)(39 56)(40 53)(41 58)(42 59)(43 60)(44 57)(45 62)(46 63)(47 64)(48 61)
(1 34)(2 35)(3 36)(4 33)(5 63)(6 64)(7 61)(8 62)(9 41)(10 42)(11 43)(12 44)(13 37)(14 38)(15 39)(16 40)(17 51)(18 52)(19 49)(20 50)(21 47)(22 48)(23 45)(24 46)(25 59)(26 60)(27 57)(28 58)(29 55)(30 56)(31 53)(32 54)
(1 31)(2 32)(3 29)(4 30)(5 26)(6 27)(7 28)(8 25)(9 22)(10 23)(11 24)(12 21)(13 18)(14 19)(15 20)(16 17)(33 56)(34 53)(35 54)(36 55)(37 52)(38 49)(39 50)(40 51)(41 48)(42 45)(43 46)(44 47)(57 64)(58 61)(59 62)(60 63)
(1 64)(2 61)(3 62)(4 63)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 47)(18 48)(19 45)(20 46)(21 51)(22 52)(23 49)(24 50)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 27)(2 26)(3 25)(4 28)(5 32)(6 31)(7 30)(8 29)(9 20)(10 19)(11 18)(12 17)(13 24)(14 23)(15 22)(16 21)(33 58)(34 57)(35 60)(36 59)(37 46)(38 45)(39 48)(40 47)(41 50)(42 49)(43 52)(44 51)(53 64)(54 63)(55 62)(56 61)

G:=sub<Sym(64)| (1,17)(2,18)(3,19)(4,20)(5,24)(6,21)(7,22)(8,23)(9,28)(10,25)(11,26)(12,27)(13,32)(14,29)(15,30)(16,31)(33,50)(34,51)(35,52)(36,49)(37,54)(38,55)(39,56)(40,53)(41,58)(42,59)(43,60)(44,57)(45,62)(46,63)(47,64)(48,61), (1,34)(2,35)(3,36)(4,33)(5,63)(6,64)(7,61)(8,62)(9,41)(10,42)(11,43)(12,44)(13,37)(14,38)(15,39)(16,40)(17,51)(18,52)(19,49)(20,50)(21,47)(22,48)(23,45)(24,46)(25,59)(26,60)(27,57)(28,58)(29,55)(30,56)(31,53)(32,54), (1,31)(2,32)(3,29)(4,30)(5,26)(6,27)(7,28)(8,25)(9,22)(10,23)(11,24)(12,21)(13,18)(14,19)(15,20)(16,17)(33,56)(34,53)(35,54)(36,55)(37,52)(38,49)(39,50)(40,51)(41,48)(42,45)(43,46)(44,47)(57,64)(58,61)(59,62)(60,63), (1,64)(2,61)(3,62)(4,63)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,27)(2,26)(3,25)(4,28)(5,32)(6,31)(7,30)(8,29)(9,20)(10,19)(11,18)(12,17)(13,24)(14,23)(15,22)(16,21)(33,58)(34,57)(35,60)(36,59)(37,46)(38,45)(39,48)(40,47)(41,50)(42,49)(43,52)(44,51)(53,64)(54,63)(55,62)(56,61)>;

G:=Group( (1,17)(2,18)(3,19)(4,20)(5,24)(6,21)(7,22)(8,23)(9,28)(10,25)(11,26)(12,27)(13,32)(14,29)(15,30)(16,31)(33,50)(34,51)(35,52)(36,49)(37,54)(38,55)(39,56)(40,53)(41,58)(42,59)(43,60)(44,57)(45,62)(46,63)(47,64)(48,61), (1,34)(2,35)(3,36)(4,33)(5,63)(6,64)(7,61)(8,62)(9,41)(10,42)(11,43)(12,44)(13,37)(14,38)(15,39)(16,40)(17,51)(18,52)(19,49)(20,50)(21,47)(22,48)(23,45)(24,46)(25,59)(26,60)(27,57)(28,58)(29,55)(30,56)(31,53)(32,54), (1,31)(2,32)(3,29)(4,30)(5,26)(6,27)(7,28)(8,25)(9,22)(10,23)(11,24)(12,21)(13,18)(14,19)(15,20)(16,17)(33,56)(34,53)(35,54)(36,55)(37,52)(38,49)(39,50)(40,51)(41,48)(42,45)(43,46)(44,47)(57,64)(58,61)(59,62)(60,63), (1,64)(2,61)(3,62)(4,63)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,27)(2,26)(3,25)(4,28)(5,32)(6,31)(7,30)(8,29)(9,20)(10,19)(11,18)(12,17)(13,24)(14,23)(15,22)(16,21)(33,58)(34,57)(35,60)(36,59)(37,46)(38,45)(39,48)(40,47)(41,50)(42,49)(43,52)(44,51)(53,64)(54,63)(55,62)(56,61) );

G=PermutationGroup([(1,17),(2,18),(3,19),(4,20),(5,24),(6,21),(7,22),(8,23),(9,28),(10,25),(11,26),(12,27),(13,32),(14,29),(15,30),(16,31),(33,50),(34,51),(35,52),(36,49),(37,54),(38,55),(39,56),(40,53),(41,58),(42,59),(43,60),(44,57),(45,62),(46,63),(47,64),(48,61)], [(1,34),(2,35),(3,36),(4,33),(5,63),(6,64),(7,61),(8,62),(9,41),(10,42),(11,43),(12,44),(13,37),(14,38),(15,39),(16,40),(17,51),(18,52),(19,49),(20,50),(21,47),(22,48),(23,45),(24,46),(25,59),(26,60),(27,57),(28,58),(29,55),(30,56),(31,53),(32,54)], [(1,31),(2,32),(3,29),(4,30),(5,26),(6,27),(7,28),(8,25),(9,22),(10,23),(11,24),(12,21),(13,18),(14,19),(15,20),(16,17),(33,56),(34,53),(35,54),(36,55),(37,52),(38,49),(39,50),(40,51),(41,48),(42,45),(43,46),(44,47),(57,64),(58,61),(59,62),(60,63)], [(1,64),(2,61),(3,62),(4,63),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,47),(18,48),(19,45),(20,46),(21,51),(22,52),(23,49),(24,50),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,27),(2,26),(3,25),(4,28),(5,32),(6,31),(7,30),(8,29),(9,20),(10,19),(11,18),(12,17),(13,24),(14,23),(15,22),(16,21),(33,58),(34,57),(35,60),(36,59),(37,46),(38,45),(39,48),(40,47),(41,50),(42,49),(43,52),(44,51),(53,64),(54,63),(55,62),(56,61)])

80 conjugacy classes

class 1 2A···2AE2AF···2BK4A···4P
order12···22···24···4
size11···12···22···2

80 irreducible representations

dim11112
type+++++
imageC1C2C2C2D4
kernelD4×C24C24×C4D4×C23C26C24
# reps1160216

Matrix representation of D4×C24 in GL6(ℤ)

-100000
0-10000
001000
000100
000010
000001
,
-100000
010000
001000
000-100
000010
000001
,
-100000
0-10000
00-1000
000-100
000010
000001
,
100000
010000
00-1000
000100
000010
000001
,
-100000
0-10000
00-1000
000100
000001
0000-10
,
-100000
010000
00-1000
000-100
000010
00000-1

G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1] >;

D4×C24 in GAP, Magma, Sage, TeX

D_4\times C_2^4
% in TeX

G:=Group("D4xC2^4");
// GroupNames label

G:=SmallGroup(128,2320);
// by ID

G=gap.SmallGroup(128,2320);
# by ID

G:=PCGroup([7,-2,2,2,2,2,2,-2,925]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽