p-group, metacyclic, nilpotent (class 2), monomial, rational
Aliases: D4, He2, 2+ 1+2, C2≀C2, AΣL1(𝔽4), C4⋊C2, C22⋊C2, C2.1C22, 2-Sylow(S4), sometimes denoted D8 or Dih4 or Dih8, symmetries of a square, SmallGroup(8,3)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4
G = < a,b | a4=b2=1, bab=a-1 >
Character table of D4
class | 1 | 2A | 2B | 2C | 4 | |
size | 1 | 1 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4)
(1 4)(2 3)
G:=sub<Sym(4)| (1,2,3,4), (1,4)(2,3)>;
G:=Group( (1,2,3,4), (1,4)(2,3) );
G=PermutationGroup([[(1,2,3,4)], [(1,4),(2,3)]])
G:=TransitiveGroup(4,3);
(1 2 3 4)(5 6 7 8)
(1 8)(2 7)(3 6)(4 5)
G:=sub<Sym(8)| (1,2,3,4)(5,6,7,8), (1,8)(2,7)(3,6)(4,5)>;
G:=Group( (1,2,3,4)(5,6,7,8), (1,8)(2,7)(3,6)(4,5) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8)], [(1,8),(2,7),(3,6),(4,5)]])
G:=TransitiveGroup(8,4);
D4 is a maximal subgroup of
SD16 S4 S3≀C2 D5≀C2 D7≀C2
D4p: D8 D12 D20 D28 D44 D52 D68 D76 ...
D2p⋊C2: C4○D4 C3⋊D4 C5⋊D4 C7⋊D4 C11⋊D4 C13⋊D4 C17⋊D4 C19⋊D4 ...
D4 is a maximal quotient of
S3≀C2 D5≀C2 D7≀C2 C4⋊S5 C22⋊S5
D4p: D8 D12 D20 D28 D44 D52 D68 D76 ...
C2.D2p: C22⋊C4 C4⋊C4 SD16 Q16 C3⋊D4 C5⋊D4 C7⋊D4 C11⋊D4 ...
action | f(x) | Disc(f) |
---|---|---|
4T3 | x4-2 | -211 |
8T4 | x8-3x7-11x6+27x5+38x4-51x3-29x2+11x+1 | 212·54·72·132·294 |
Matrix representation of D4 ►in GL2(ℤ) generated by
0 | -1 |
1 | 0 |
1 | 0 |
0 | -1 |
G:=sub<GL(2,Integers())| [0,1,-1,0],[1,0,0,-1] >;
D4 in GAP, Magma, Sage, TeX
D_4
% in TeX
G:=Group("D4");
// GroupNames label
G:=SmallGroup(8,3);
// by ID
G=gap.SmallGroup(8,3);
# by ID
G:=PCGroup([3,-2,2,-2,37]);
// Polycyclic
G:=Group<a,b|a^4=b^2=1,b*a*b=a^-1>;
// generators/relations
Export