Extensions 1→N→G→Q→1 with N=C22 and Q=S32

Direct product G=N×Q with N=C22 and Q=S32

Semidirect products G=N:Q with N=C22 and Q=S32
extensionφ:Q→Aut NdρLabelID
C22⋊S32 = S3×S4φ: S32/S3S3 ⊆ Aut C22126+C2^2:S3^2144,183
C222S32 = S3×C3⋊D4φ: S32/C3×S3C2 ⊆ Aut C22244C2^2:2S3^2144,153
C223S32 = Dic3⋊D6φ: S32/C3⋊S3C2 ⊆ Aut C22124+C2^2:3S3^2144,154

Non-split extensions G=N.Q with N=C22 and Q=S32
extensionφ:Q→Aut NdρLabelID
C22.1S32 = D6.3D6φ: S32/C3×S3C2 ⊆ Aut C22244C2^2.1S3^2144,147
C22.2S32 = D6.4D6φ: S32/C3⋊S3C2 ⊆ Aut C22244-C2^2.2S3^2144,148
C22.3S32 = Dic32central extension (φ=1)48C2^2.3S3^2144,63
C22.4S32 = D6⋊Dic3central extension (φ=1)48C2^2.4S3^2144,64
C22.5S32 = C6.D12central extension (φ=1)24C2^2.5S3^2144,65
C22.6S32 = Dic3⋊Dic3central extension (φ=1)48C2^2.6S3^2144,66
C22.7S32 = C62.C22central extension (φ=1)48C2^2.7S3^2144,67
C22.8S32 = C2×S3×Dic3central extension (φ=1)48C2^2.8S3^2144,146
C22.9S32 = C2×C6.D6central extension (φ=1)24C2^2.9S3^2144,149
C22.10S32 = C2×D6⋊S3central extension (φ=1)48C2^2.10S3^2144,150
C22.11S32 = C2×C3⋊D12central extension (φ=1)24C2^2.11S3^2144,151
C22.12S32 = C2×C322Q8central extension (φ=1)48C2^2.12S3^2144,152