direct product, metabelian, supersoluble, monomial
Aliases: C2xC3:D12, D6:5D6, C6:2D12, Dic3:4D6, C62.11C22, (C3xC6):3D4, C3:3(C2xD12), C32:5(C2xD4), C6:1(C3:D4), C22.11S32, (C2xC6).16D6, (C22xS3):3S3, (S3xC6):6C22, (C6xDic3):5C2, (C2xDic3):4S3, (C3xC6).15C23, C6.15(C22xS3), (C3xDic3):4C22, (S3xC2xC6):2C2, C2.15(C2xS32), C3:1(C2xC3:D4), (C2xC3:S3):3C22, (C22xC3:S3):1C2, SmallGroup(144,151)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xC3:D12
G = < a,b,c,d | a2=b3=c12=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 464 in 124 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2xC4, D4, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3:S3, C3xC6, C3xC6, D12, C2xDic3, C3:D4, C2xC12, C22xS3, C22xS3, C22xC6, C3xDic3, S3xC6, S3xC6, C2xC3:S3, C2xC3:S3, C62, C2xD12, C2xC3:D4, C3:D12, C6xDic3, S3xC2xC6, C22xC3:S3, C2xC3:D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C3:D4, C22xS3, S32, C2xD12, C2xC3:D4, C3:D12, C2xS32, C2xC3:D12
Character table of C2xC3:D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | -2 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -2 | 1 | -2 | -2 | 1 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | 2 | 1 | -2 | -2 | 1 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -2 | 2 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -2 | 2 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -2 | 1 | 1 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 2 | -1 | 1 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -2 | 1 | 1 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 2 | -1 | 1 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | 1 | -2 | -2 | 1 | 1 | -1 | 1 | -√-3 | -√-3 | √-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3:D4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | 1 | -2 | -2 | 1 | 1 | -1 | 1 | √-3 | √-3 | -√-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3:D4 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | 1 | -1 | √-3 | -√-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3:D4 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | 1 | -1 | -√-3 | √-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3:D4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3:D12 |
ρ28 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS32 |
ρ30 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3:D12 |
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 13)
(1 9 5)(2 6 10)(3 11 7)(4 8 12)(13 17 21)(14 22 18)(15 19 23)(16 24 20)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 16)(2 15)(3 14)(4 13)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)
G:=sub<Sym(24)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13), (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13), (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,13)], [(1,9,5),(2,6,10),(3,11,7),(4,8,12),(13,17,21),(14,22,18),(15,19,23),(16,24,20)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,16),(2,15),(3,14),(4,13),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17)]])
G:=TransitiveGroup(24,230);
C2xC3:D12 is a maximal subgroup of
C62.20C23 Dic3.D12 C62.23C23 C62.24C23 Dic3:4D12 C62.51C23 Dic3:D12 D6.D12 C62.74C23 D6:D12 C62.77C23 C12:7D12 Dic3:3D12 C12:D12 C62.82C23 C12:2D12 D6:4D12 D6:5D12 C62.100C23 C62.113C23 C62:5D4 C62:6D4 C62.121C23 C62:8D4 C2xS3xD12 D12:13D6 C2xS3xC3:D4
C2xC3:D12 is a maximal quotient of
D12:18D6 D12.27D6 D12.28D6 D12.29D6 Dic6.29D6 D6:7Dic6 C12.27D12 C12.28D12 Dic3:Dic6 C12.30D12 C12:7D12 C12:D12 C12:2D12 C62.57D4 C62.60D4 C62:5D4 C62:6D4 C62:8D4
Matrix representation of C2xC3:D12 ►in GL6(Z)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[0,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C2xC3:D12 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes D_{12}
% in TeX
G:=Group("C2xC3:D12");
// GroupNames label
G:=SmallGroup(144,151);
// by ID
G=gap.SmallGroup(144,151);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,121,55,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^12=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export