# Extensions 1→N→G→Q→1 with N=C62 and Q=C4

Direct product G=N×Q with N=C62 and Q=C4
dρLabelID
C2×C6×C12144C2xC6xC12144,178

Semidirect products G=N:Q with N=C62 and Q=C4
extensionφ:Q→Aut NdρLabelID
C621C4 = C62⋊C4φ: C4/C1C4 ⊆ Aut C62124+C6^2:1C4144,136
C622C4 = C22×C32⋊C4φ: C4/C1C4 ⊆ Aut C6224C6^2:2C4144,191
C623C4 = C32×C22⋊C4φ: C4/C2C2 ⊆ Aut C6272C6^2:3C4144,102
C624C4 = C3×C6.D4φ: C4/C2C2 ⊆ Aut C6224C6^2:4C4144,84
C625C4 = C625C4φ: C4/C2C2 ⊆ Aut C6272C6^2:5C4144,100
C626C4 = Dic3×C2×C6φ: C4/C2C2 ⊆ Aut C6248C6^2:6C4144,166
C627C4 = C22×C3⋊Dic3φ: C4/C2C2 ⊆ Aut C62144C6^2:7C4144,176

Non-split extensions G=N.Q with N=C62 and Q=C4
extensionφ:Q→Aut NdρLabelID
C62.1C4 = C2×C322C8φ: C4/C1C4 ⊆ Aut C6248C6^2.1C4144,134
C62.2C4 = C62.C4φ: C4/C1C4 ⊆ Aut C62244-C6^2.2C4144,135
C62.3C4 = C32×M4(2)φ: C4/C2C2 ⊆ Aut C6272C6^2.3C4144,105
C62.4C4 = C6×C3⋊C8φ: C4/C2C2 ⊆ Aut C6248C6^2.4C4144,74
C62.5C4 = C3×C4.Dic3φ: C4/C2C2 ⊆ Aut C62242C6^2.5C4144,75
C62.6C4 = C2×C324C8φ: C4/C2C2 ⊆ Aut C62144C6^2.6C4144,90
C62.7C4 = C12.58D6φ: C4/C2C2 ⊆ Aut C6272C6^2.7C4144,91

׿
×
𝔽